II International Scientific Practical Conference of graduate and postgraduate students, lecturers «APPLIED ISSUES OF EXACT SCIENCES»

19-20 October 2018, Armavir

ОБУЧЕНИЕ МЕТОДУ МОДЕЛИРОВАНИЯ ЧЕРЕЗ РЕШЕНИЕ ЗАДАЧ С ПАРАМЕТРАМИ

А.В. Шашкова

студентка Белорусского государственного педагогического университета имени Максима Танка, г. Минска, Беларусь, sshasskova@gmail.com

Аннотация: в данной статье рассматриваются задачи с параметрами, решение которых осуществлено с помощью дифференциального исчисления. Выстраивается алгоритм рассуждений, приводящий к поиску решения рассмотренных задач.

Ключевые слова: метод моделирования, задачи с параметрами, дифференциальное исчисление.

EDUCATION THE MODELING METHOD THROUGH THE SOLUTION OF TASKS WITH PARAMETERS

Anastasiya V. Shashkova

the student Belarusian State Pedagogical University Named after Maxim Tank, city of Minsk, Belarus, sshasskova@gmail.com

Abstract: this article deals with problems that have been solved using differential calculus. The algorithm of reasoning is built up leading to the search for solutions to the problems considered.

Key words: modeling method, problems with parameters, differential calculus.

Многие задачи естествознания сводятся к математической модели, которая представляет собой задачу с параметром. Задачи с параметрами являются наиболее трудными в курсе элементарной математики. Их решение представляет собой исследование функций, входящих в условие задачи, и последующее решение уравнений или неравенств с числовыми коэффициентами [1]. При решении задач с параметрами сначала проводиться анализ задачи, классифицируется значение параметра. Затем нужно перейти от исходной задачи к равносильной ей используя рациональные методы решения. Также, исследование задач с параметрами играет важную роль в формировании логического мышления, в развитии исследовательских навыков студентов [2].

Формирование опыта моделирования в процессе обучения математике осуществляется посредством решения любых задач. Задачи с

II International Scientific Practical Conference of graduate and postgraduate students, lecturers «APPLIED ISSUES OF EXACT SCIENCES» 19-20 October 2018, Armavir

параметрами являются средством формирования опыта моделирования. Они ставят учащихся на позицию исследователя, так как позволяют учащимся рассмотреть проблему с разных точек зрения, дать полное и исчерпывающее ее решение.

Сложность обучения решению задач с параметрами состоит в необходимости комплексного использования знаний и умений, переноса их в новые условия, их решение – не алгоритмично. Особый интерес задачи с параметрами, которые представляют можно свести исследованию некоторых функций на монотонность или экстремум, или в которых используется геометрический, физический смысл производной, решаются с помощью дифференциального исчисления. В качестве примера рассмотрим две задачи, на основании решения которых выстраивается алгоритм рассуждений, приводящий к поиску решения.

Задачи

Задача 1. При каком значении параметра а прямые, проходящие через точку C (1;1) плоскости xOy и касающиеся двух ветвей гиперболы $y = \frac{a}{x}$ (a < 0) в точках A и B, образуют правильный треугольник? Найти площадь S этого треугольника.

Решение данной задачи разобьем на следующие этапы, которые и служат алгоритмом решения задач данного типа:

Первый этап. Заметим, что ветви данной гиперболы симметричны относительно прямой y=x, а точка C(1;1) принадлежит этой прямой, поэтому можно сделать следующий вывод: точки A и B симметричны относительно прямой y=x. Предположим, что точка A имеет координаты $(t_1; t_2)$, тогда точка *B* будет иметь координаты $(t_2; t_1)$. Следовательно, CA = CB при любых значениях параметра a < 0.

Второй этап. При некотором фиксированном значении параметра а возьмём произвольную точку гиперболы $y = \frac{a}{r}$ и обозначим через переменную t её абсциссу, тогда её ордината

$$y(t) = \frac{a}{t}$$
.

Найдём уравнение касательной к данной гиперболе в точке (t; y(t)), используя известное уравнение

$$y = y(t) + y'(t)(x - t),$$

y=y(t)+y'(t)(x-t), после подстановки вместо $y(t)=rac{a}{t}$ и вместо $y'(t)=-rac{a}{t^2}$ получим следующее равенство

$$y = \frac{a}{t} - \frac{a}{t^2}(x - t).$$

Выполнив преобразования, окончательно получаем уравнение касательной к гиперболе в произвольной точке $(t; \frac{a}{t})$:

II International Scientific Practical Conference of graduate and postgraduate students, lecturers «APPLIED ISSUES OF EXACT SCIENCES»

19-20 October 2018, Armavir

$$y = -\frac{a}{t^2}x + \frac{2a}{t}. (1)$$

Из условия задачи заметим, что наша касательная, заданная уравнением (1), проходит через точку C (1;1). Подставим координаты точки C в полученное уравнение

$$1 = -\frac{a}{t^2} \cdot 1 + \frac{2a}{t},$$

ИЛИ

$$t^2 - 2at + a = 0. (2)$$

Решим данное квадратное уравнение (2). При значении параметра a < 0 получим два корня t_1 и t_2 , которые и являются абсциссами точек A и B. По теореме Виета имеем следующие соотношения, которые будем использовать на третьем этапе:

$$t_1 + t_2 = 2a$$
, $t_1 t_2 = a$.

<u>Третий этал.</u> По условию задачи треугольник CAB – правильный, поэтому AB = CA. Найдем CA^2 и AB^2 . Из полученных на втором этапе соотношений между корнями t_1 и t_2 имеем

$$CA^2 = (t_1 - 1)^2 + (t_2 - 1)^2 = 4a^2 - 6a + 2,$$

 $AB^2 = (t_1 - t_2)^2 + (t_2 - t_1)^2 = 8a^2 - 8a.$ (3)

Приравняем правые части полученных равенств

$$4a^2 - 6a + 2 = 8a^2 - 8a,$$

$$-4a^2 + 2a + 2 = 0.$$

Умножим левую и правую части уравнения на (-1) и сократим на 2, получим

$$2a^2 - a - 1 = 0.$$

Решив это уравнение, получим следующие значения

$$a_1 = 1$$
, $a_2 = -\frac{1}{2}$.

Так как по условию задачи мы знаем, что наш параметр a принимает отрицательные значения, то значение параметра a=1 не удовлетворяет данному условию. Подставим значение параметра $a=-\frac{1}{2}$ в равенство (3) и получим, что

$$AB^2 = 6$$
.

Зная все нужные для решения задачи данные, найдем площадь S треугольника $C\!AB$

$$S = \frac{1}{2} \cdot AB^{2} \cdot Sin60^{\circ} = \frac{1}{2} \cdot 6 \cdot \frac{\sqrt{3}}{2} = \frac{3\sqrt{3}}{2}.$$

Otbet:
$$a = -\frac{1}{2}$$
, $S = \frac{3\sqrt{3}}{2}$.

II International Scientific Practical Conference of graduate and postgraduate students, lecturers «APPLIED ISSUES OF EXACT SCIENCES» 19-20 October 2018, Armavir

3ada4a 2. Найти все значения параметра a, при каждом из которых неравенство $\frac{(3^x + 3^{-x}) - a}{a + 5} \le 0$ не имеет решений.

Обозначим через

$$t = 3^{x} > 0,$$

$$f(t) = t + \frac{1}{t} = \frac{t^{2} + 1}{t}.$$

Проведем исследование функции f(t). Найдем её производную и минимальное значение

$$f'(t) = \frac{t^2 - 1}{t^2}.$$

Производная обращается в нуль в точке $t_0 = 1$, поэтому минимальное значение функции находится следующим образом

$$f_{min} = f(1) = 2.$$

 $f_{min} = f(1) = 2.$ Искомое неравенство не будет иметь решения в следующих случаях:

1)
$$\begin{cases} a+5 \ge 0 \\ f(t)-a>0 \end{cases} \Rightarrow \begin{cases} a \ge -5 \\ a < f(t) \end{cases}$$
2)
$$\begin{cases} a+5 \le 0 \\ f(t)-a < 0 \end{cases} \Rightarrow \begin{cases} a \le -5 \\ a < f(t) \end{cases}$$

Так как функция f(t) неограниченно возрастает при t > 2, то найдется такое значение переменной x, при котором функция f(t) превысит значение параметра a. Поэтому случай (2) не подходит.

Случай (1) возможен при любом значении переменной x, если значение параметра а будет меньше, чем минимальное значение функции f(t).

Таким образом,

$$\begin{cases} a \ge -5 \\ a < 2 \end{cases}$$

Ответ: $a \in [-5; 2)$

Рассмотрев данную задачу, можно выделить следующий алгоритм:

- 1. Сделаем замену через новую переменную, например, t.
- 2. Рассмотрим полученную функцию.
- 2. Найдем производную данной функции и с помощью нее вычислим минимальное значение.
- 3. Далее рассмотрим случаи, когда наше неравенство не будет иметь решений.
- 4. Проведем анализ полученного результата, сравним его с условием задачи и определим нужный ответ.

Рассмотрев вышеперечисленные примеры, можно сделать вывод о том, что задачи с параметрами, которые можно свести к исследованию некоторых функций на монотонность или экстремум, или в которых

II Международная научно-практическая конференция студентов, аспирантов, преподавателей «ПРИКЛАДНЫЕ ВОПРОСЫ ТОЧНЫХ НАУК»

II International Scientific Practical Conference of graduate and postgraduate students, lecturers «APPLIED ISSUES OF EXACT SCIENCES»

19-20 October 2018, Armavir

используется геометрический и физический смысл производной, намного проще решать с помощью дифференциальных исчислений. В данной работе был выделен алгоритм рассуждений, который показывает простоту и удобство рассматриваемого метода.

Список использованных источников:

- 1. Крамор В.С. Задачи с параметрами и методы их решения. Москва: Изд-во: ООО «Издательство Оникс», 2007. С. 242–250.
- 2. Л.А. Апайчева, Л.Е. Шувалова. Применение дифференциального исчисления при решении задач с параметрами // Перспективы развития научных исследований в 21 веке: сборник материалов 6-й междунар. науч.практ. конф. Махачкала: Изд-во: ООО «Апробация», 2014. С. 7 –9.