КОМБИНИРОВАННЫЕ ЭЛЕКТРОСТАНЦИИ В АВТОНОМНОМ ЭЛЕКТРОСНАБЖЕНИИ

М.С. Губатенко

Балаковский инженерно-технологический институт — филиал федерального государственного автономного образовательного учреждения высшего профессионального образования «Национальный исследовательский ядерный университет «МИФИ», Россия, Балаково, MSGubatenko@mephi.ru

Аннотация. Описаны комбинированные электростанции автономного электроснабжения, актуальность применения, структурная и принципиальная схемы, приведен перечень актуальных оптимальных задач, решение которых обеспечит использование максимально энергоэффективной комбинированной электростанции.

Ключевые слова: комбинированная электростанция, автономное электроснабжение, струтура, принципиальная схема, актуальные задачи оптимизации.

COMBINED POWER PLANT IN AUTONOMOUS POWER SUPPLY

M.S. Gubatenko

Balakovo Engineering and Technology Institute branch of the Federal State Autonomous Educational institutions of higher education "National Research Nuclear University" MEPhI"

Abstract. Described combined power plant of autonomous power supply, the relevance of use, structural and circuit diagrams, lists of actual optimization problems, solution of which will ensure the utilization most energy-efficient combined-power plants.

Keywords: Combined power plant, autonomous power supply, structure, a circuit diagram, current optimization problem.

В настоящее время достаточно большое количество населения Российской Федерации проживают в районах удаленных от центра регионов, не входящих в зону обслуживания централизованной системы электроснабжения. Помимо этого, сложности с электроснабжением от централизованной системы возникают и при освоении новых территорий. В связи с этим актуальным решением перечисленных проблем является применение автономных электростанций. Автономное энергообеспечение потребителей промышленных предприятий также стремительно развивается, что может быть обусловлено более низкой стоимостью 1 кВт·ч электроэнергии в зависимости от используемого оборудования, возможностью совместной работы с централизованной системой электроснабжения, а также применением автономных электростанций в качестве резервного источника питания.

Большинство автономных систем электроснабжения на сегодняшний день созданы и применяются на базе двигателей внутреннего сгорания (наиболее часто это дизельные электростанции). Однако, транспортировка топлива и зависимость от его поставок, рост цен на топливо, не позволяют снизить стоимость электроэнергии по сравнению с получаемой от централизованной системы электроснабжения, а также обеспечить бесперебойное питание потребителей. Необходимо учесть, что моторесурс двигателя ограничен, график потребления энергии имеет неравномерный характер, двигатель работает в неноминальном режиме (повышенный расход топлива), и в связи с этим, проблемы повышения экономичности дизельных установок, а также увеличения количества вырабатываемой энергии в течении срока эксплуатации являются одними из наиболее актуальных. К тому же в случае децентрализованного энергоснабжения рационально использовать установки, обеспечивающие как выработка электрической, так и тепловой энергии. Это связано с тем, что раздельная выработка

электрической и тепловой энергии приводит к увеличению расхода топлива примерно в 1,5 раза [1, 2].

Перспективным решением перечисленных проблем является применение минитеплоэлектроцентрали на базе дизель-генераторов. Электроэнергия для потребителей вырабатывается генераторами ДВС. Электрическая энергия от генераторов ДВС может производится с напряжением 0,4 кВ или 6 (10) кВ. Как правило, тепловая энергия от мини-ТЭЦ отпускается в виде нагретой сетевой воды с температурным потенциалом 90–105 °С и применяется для отопления и горячего водоснабжения потребителей. Система утилизации тепла мини-ТЭЦ предусматривает производство горячей воды или пара для отопления (когенерация) и холода для систем кондиционирования и вентиляции (тригенерация). Электрический КПД мини-ТЭЦ на базе ДВС составляет, в среднем, 33–40%. Общий коэффициент полезного действия (электрический и тепловой) для этих мини-ТЭЦ достигает 82–89% [3, 4].

Анализ показывают, что 1 МВт электрической мощности мини-ТЭЦ можно получить до 1МВт тепловой мощности [3]. Из них:

- 35 40 % от утилизации теплоты выхлопных газов.
- 14-24~% от использования теплоты охлаждающей воды из «рубашки» корпуса ДВС.
 - 6 8 % от утилизации теплоты наддувного (сжатого) воздуха.
 - 5 8 % от использования теплоты смазочного масла.

Для производства тепловой и электрической энергии рационально также использовать природные возобновляемые энергоресурсы. Экологическая чистота и неисчерпаемость возобновляемых источников энергии (ВИЭ) однозначно определяют приоритет их использования в автономном электроснабжении. Однако непостоянство первичного энергоресурса возобновляемых источников энергии ограничивает их область применения, а также не гарантирует бесперебойность питания потребителя.

Таким образом, применение возобновляемых источников энергии в составе мини-ТЭЦ на базе ДВС позволяет снизить топливную составляющую в себестоимости вырабатываемой электроэнергии, что существенно повышает их технико-экономическую эффективность, а также обеспечить бесперебойную передачу качественной электрической и тепловой энергии в любой момент времени. Поскольку изменчивость во времени как энергии первичного энергоносителя, так и графика потребления энергии можно описать с определенной долей вероятности, то в состав комбинированной электростанции на основе ДВС и ВИЭ необходимо включить буферное устройство накопления энергии (аккумуляторную батарею). Наиболее перспективная с точки зрения энергоэффективности структурная схема комбинированной электростанции автономного электроснабжения, в зависимости от эффективной доступности первичного энергоресурса ВИЭ, а также исходя из условия минимального временного промежутка работы ДВС (минимального потребления топлива), представлена на рис. 1.

Согласно представленной схеме (рис. 1) обеспечиваются условия максимального эффекта от использования технологии мини-ТЭЦ на базе ДВС и ВИЭ:

- значительно сниженный расход топлива, а следовательно и повышенный срок эксплуатации ДВС и увеличенный период времени между ТО;
- бесперебойность обеспечения потребителя как тепловой, так и электрической энергией;
- уменьшение выбросов углекислого газа, улучшение экологической обстановки;
- сведение к минимуму зависимости от поставок топлива для ДВС.

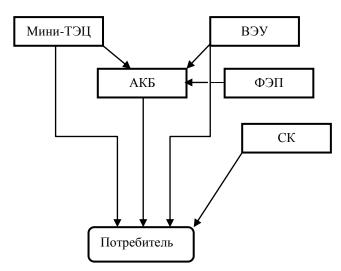


Рис. 1. Структурная схема комбинированной электростанции: ВЭУ – ветроэнергетическая установка; ФЭП- фотоэлектрические преобразователи; СК – солнечный коллектор; АКБ – аккумуляторная батарея

В результате рассматриваемая комбинированная электростанция автономного электроснабжения имеет многокомпонентную структуру, даже при упрощении структурной схемы (например, при использовании только ДВС, АКБ и ВЭУ). В связи с этим оптимальный выбор оборудования электростанции, позволяющий прийти к максимуму энергоэффективности является одной из актуальных задач. Величина первичного энергоресурса ВИЭ и нагрузка потребителя имеет случайный характер, что требует оптимального согласования в реальном времени режимов производства и потребления энергии, что также ставит актуальную задачу выбора оптимальных режимов работы электростанции.

Таким образом, при проектировании комбинированных электростанций для автономного электроснабжения необходимо акцентировать внимание на ряд задач:

- Определение оптимальной структуры комбинированной электростанции;
- Определение оптимального соотношения генерируемых мощностей;
- Оптимальный выбор оборудования электростанции;
- Оптимальный выбор режимов работы комбинированной электростанции и их реализация.

Решение представленных задач на основе теории оптимизации позволит разработать максимально энергоэффективную комбинированную электростанцию автономного электроснабжения, что и является целевым направлением дальнейших исследований.

Библиографический список

- 1. Лукутин Б.В. Возобновляемые источники электроэнергии: учебное пособие / Б.В. Лукутин. Томск: Изд-во Томского политехнического университета, 2008. 187 с.
- 2. Хошнау Зана Пешанг Халил. Автономные системы электроснабжения на основе энергоэффективных ветродизельных электростанций: автореферат дис. ... кандидата технических наук: 05.14.02 / Хошнау Зана Пешанг Халил; [Место защиты: Нац. исслед. Том. политехн. ун-т]. Томск, 2012. 20 с
- 3. Мнин-ТЭЦ на базе двигателей внутреннего сгорания: [Электронный ресурс], URL: http://estechno.ru/news/articles about energetics/chp based on ice/, (дата обращения:10.12.2015).
- 4. Общие сведения о мини-ТЭЦ: [Электронный ресурс], URL: http://www.rosteplo.ru/Tech_stat/shablon.php?id=769, (дата обращения:10.12.2015).