ПЕРСПЕКТИВНЫЕ НАПРАВЛЕНИЯ ПОВЫШЕНИЯ ЭНЕРГОЭФФЕКТИВНОСТИ ПГУ КЭС

И.И. Просин*, И.А. Ростунцова*

* Саратовский государственный технический университет имени Гагарина Ю.А, Россия, Саратов, rostunzeva@mail.ru

Аннотация. Представлены схема и методика оценки эффективности газового промперегрева пара на ПГУ-КЭС двухконтурного типа.

Ключевые слова: газотурбинная установка, промперегрев пара, эффективность схемы, двухконтурная ПГУ.

FUTURE DIRECTIONS ENERGY EFFICIENCY PSU IES

I.I. Prosin *, I.A. Rostuntsova *

* Yuri Gagarin state technical university of Saratov, Saratov, Russia, rostunzeva@mail.ru

Annotation. A scheme of assessment methodology and the efficiency of gas reheat steam bypass PGU-IES type.

Keywords: gas turbine, the exhaust gases, the efficiency of the circuit evaporative cooling tower.

Перспективным направлением развития современной энергетики России является внедрение парогазовых технологий. Это связано с необходимостью строительства и внедрения более совершенных энергетических блоков в плане тепловой экономичности по сравнению с паротурбинными установками [1-3]. В двухконтурных парогазовых установках коэффициент полезного действия (КПД) по выработке электрической энергии достигает 45...50%. КПД трехконтурной ПГУ с промежуточным перегревом пара, в которой температура газов перед газовой турбиной находится на уровне 1450°С, достигает 60%. Дальнейшее совершенствовании парогазовых установок сопряжено с применением промежуточного перегрева пара, тем самым увеличивая КПД паровой турбины в составе ПГУ за счет подвода к пару дополнительной теплоты. Поэтому разработка схемы промежуточного газового перегрева пара на парогазовых установках КЭС двухконтурного типа в плане повышения КПД цикла является актуальной задачей.

Представлены результаты анализа работы парогазовой установки с введением газового промперегрева пара на базе блока ПГУ-170 КЭС путем теплового расчёта.

Для повышения надёжности и экономичности работы ПГУ станции предлагается с наружной стороны камеры сгорания ГТУ разместить кольцевой канал для промежуточного перегрева водяного пара. Промежуточный перегрев позволят повысить располагаемый теплоперепад пара в части низкого давления паровой турбины за счёт подвода к нему дополнительной теплоты, что увеличивает мощность турбины. Основное отличие от стандартного принципа работы ПГУ заключается в том, что отработавший пар на выходе из цилиндра высокого давления с пониженными значениями температуры и давления поступает по паропроводу в расположенный с наружной стороны камеры сгорания газотурбинной установки кольцевой канал, где перегревается до заданной температуры. Затем по трубопроводу перегретый пар направляется в цилиндр низкого давления, куда также подается генерируемый в котле-утилизаторе пар низкого давления. Принципиальная тепловая схема энергоблока ПГУ-170 с газовым перегревом пара представлена на рис.1.

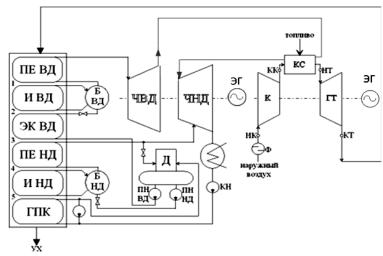


Рис.1. Принципиальная тепловая схема энергоблока ПГУ-170 с газовым промперегревом пара: ПЕ ВД, ПЕ НД — пароперегреватель высокого и низкого давлений; K — конденсатор; W ВД, W НД — испаритель высокого и низкого давлений; W — электрический генератор; W ВД — экономайзер высокого давления; W — газовый подогреватель конденсата; W ВД, W НД — барабан высокого и низкого давлений; W — электрогенератор; W ВД, W НД — питательный насос высокого и низкого давлений; W — газовая турбина; W НД — часть высокого и низкого давлений; W — деаэратор; W — конденсатный насос; W — воздушный компрессор; W — воздушный фильтр; W — камера сгорания топлива

Аналогом камеры сгорания используемой для промперегрева является камера с кольцевым каналом [4] рис. 2.

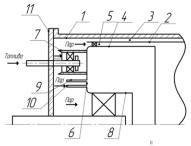


Рис. 2. Конструктивные особенности камеры сгорания ГТУ

Как видно из рисунка камера сгорания содержит цилиндрический корпус 1, соосную с ним жаровую трубу 2, образующих проточную полость для подвода воздуха 3, цилиндрический экран 4, расположенный соосно внутри жаровой трубы и образующий с ней кольцевой канал 5 для прохода пара, фронтовое устройство 6, периферийные горелочные устройства 7, расположенные равномерно по окружности во фронтовом устройстве, центральное горелочное 8, расположенную на оси жаровой трубы и задвинутую в жаровую трубу глубже, чем периферийные горелочные устройства, охлаждающие глушители 9, установленные на фронтовом устройстве, выполненные в виде полых тел произвольного поперечного сечения, направленных открытым торцом к зоне горения, при этом противоположные торцы охлаждающих глушителей закрыты крышками 10, крышку камеры сгорания 11, закрывающую корпус камеры сгорания с торца.

Для оценки эффективности ПГУ с вводом газового промперегрева составлен материально тепловой баланс камеры сгорания (рис.3).

Перегретый пар в ЧНД

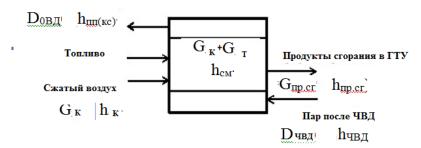


Рис. 3. Баланс камеры сгорания с введения газового промперегрева пара

Получено следующее выражение:

$$D_{0BJ} \cdot (h_{\text{nn}(\kappa c)} - h_{\text{VBJ}}) = G_{\text{np.cr}} \cdot (h_{\text{cm}} - h_{\text{np.cr}}), \tag{1}$$

где $D_{0BД}$ -расход пара отбираемый из ЧВД, кг/с; $h_{nn(\kappa c)}$ – энтальпия перегретого пара, кДж/кг; $h_{\text{ЦВД}}$ – энтальпия пара, отбираемого из ЧВД, кДж/кг; $G_{np.cr}$ – расход продуктов сгорания подаваемый в ГТ, кг/с; h_{cm} – энтальпия топливо-воздушной смеси, кДж/кг; $h_{np.cr}$ – энтальпия продуктов сгорания, кДж/кг; h_{cm} = $f(t_{cm})$ = 34056,3 кДж/кг (по таблице энтальпий продуктов сгорания).

Из баланса определяется энтальпия продуктов сгорания на выходе из камеры сгорания:

$$h_{\text{пр.сг.}} = \left(D_{0B\Pi} \cdot (h_{\text{пп(кc)}} - h_{\text{ЦВ}\Pi}) - G_{\text{пр.сr}} h_{\text{см}}\right) / G_{\text{пр.сr}} \tag{2}$$

Показатели эффективности парогазовой установки с газовым промежуточным перегревом (ГПП) приведены в табл.1.

Таблица 1. Показатели эффективности парогазовой установки до и после введения газового перегревателя пара

перегревателя нара	Размерность	Без ГПП (данные	С введением
Показатели		из расчета теп-	ГПП
		ловой схемы ос-	
		новной части)	
КПД парогазовой установки, $\eta_{\Pi\Gamma y}$	%	49,06	53,96
Электрическая мощность ПГУ, $N_{\Pi\Gamma Y}$	МВт	165,9	175,93
КПД паротурбиной установки, $\eta_{\Pi T Y}$	%	35,48	38,95
Электрическая мощность ПТУ, $N_{\Pi T Y}$	МВт	55,11	62,76
КПД газотурбиной установки, $\eta_{\Gamma T Y}$	%	35,85	31,95
Электрическая мощность ГТУ, $N_{\Gamma T Y}$	МВт	110,8	113,21
Потребляемая мощность компрессором, N _K	МВт	97,53	144,96
Расход продуктов сгорания, $G_{yx,r}$	кг/с	257,97	376,45
Температура продуктов сгорания на входе в ГТ, $t_{\mbox{\tiny HT}}$	°C	1210	1016
Температура продуктов сгорания на выходе из ГТ,	°C	625,8	507,6
t_4			
Работа расширения в ГТ, $L_{\Gamma T}$	кДж/кг	838,95	708,12
Работа сжатия в компрессоре L _K	кДж/кг	361,07	361,07
Работа газотурбинного цикла, $L_{\Gamma T Y}$	кДж/кг	423,89	302,04
Расход воздуха в компрессор, Gк	кг/с	280,61	413
Расход воздуха на входе в камеру сгорания, $G_{\kappa c}$	кг/с	251,15	369,63
Подводимое количество тепла в камере сгорания,	кДж/кг	1216,16	945,45
$\mathbf{q}_{ ext{ iny KC}}$			

Изменение КПД и электрической мощности ПГУ без промперегрева (вариант 1) и при внедрении газового промперегрева (вариант 2) показано ни рис.4.

Рис.4. Изменение КПД и электрической мощности ПГУ

В результате введения газового промперегрева пара температура на входе в газовую турбину снизиться на 194° C, что приведет к снижению КПД ГТУ, но при неизменном расходе газа будет наблюдаться увеличение мощности ГТУ, КПД ПТУ, мощности ПТУ. Это в свою очередь приведет к увеличению мощности и КПД парогазовой установки в целом.

Таким образом, повышение энергетической эффективности теплоэлектрогенерирующих установок требует повышения начальных параметров рабочей среды. Газовый промежуточный перегрев пара на ПГУ повышает коэффициент полезного действия и электрическую мощность парогазовой установки.

Библиографический список

- 1. Степанов И. Р. Парогазовые установки. Основы теории, применение и перспективы. Апатиты: изд. Кольского научного центра РАН, 2000.706 с.
- 2. Ольховский Г. Г. Энергетические газотурбинные установки. М.: Энергоатомиздат, 1985. 298 с.
- 3. Цанев С. В., Буров В. Д., Ремезов А. Н. Газотурбинные и парогазовые установки тепловых электростанций: Под. ред. С. В. Цанева. М.: МЭИ, 2002. 584 с.
- 4. Система впрыска топлива в камеру сгорания газотурбинного двигателя, камера сгорания, оснащенная такой системой, и газотурбинный двигатель: пат. №2468297. Опубл. 27.11.2012 Авторы: Сандели Дени (FR), ДЕЗОЛЬТИ Мишель (FR), БОДУЭН Кристоф (FR).