АВТОМАТИЗИРОВАННЫЙ КОНТРОЛЬ ТЕХНИЧЕСКОГО СОСТОЯНИЯ УСТРОЙСТВ РЕГУЛИРОВАНИЯ НАПРЯЖЕНИЯ СИЛОВОГО ТРАНСФОРМАТОРА ПОД НАГРУЗКОЙ В ЭЛЕКТРОЭНЕРГЕТИКЕ

А.С. Добродум

Саратовский государственный технический университет имени Гагарина Ю.А, Россия, Саратов, author1@sstu.ru

Аннотация: Проведен анализ поломок силового трансформатора, рассмотрены принцип действия устройств регуляторов напряжения под нагрузкой, основные методы автоматизированного контроля.

Ключевые слова: силовой трансформатор, устройств регуляторов напряжения, методы автоматизированного контроля.

THE AUTOMATED MONITORING OF TECHNICAL CONDITION OF DEVICES OF REGULATION OF TENSION OF THE POWER TRANSFORMER UNDER LOADING IN POWER INDUSTRY

A.S. Dobrodum

Yuri Gagarin state technical university of Saratov, Russia, Saratov, author1@sstu.ru

Abstract: The analysis of breakages of a power transformer is carried out, the main methods of the automated monitoring are considered the principle of operation of devices of voltage adjusters under loading.

Keywords: power transformer, devices of voltage adjusters, methods of the automated monitoring.

Известно, что высоковольтное оборудование, например силовые трансформаторы, высоковольтные выключатели, и средства защиты от перенапряжения являются важнейшим узлом распределительной сети. Безусловно самым дорогим элементом на подстанции является силовой трансформатор. Опыт эксплуатации систем электроснабжения показывает, что экономический ущерб от случайной аварии, связанной с остановкой силового трансформатора, может достигать нескольких миллионов рублей, в эту стоимость включается как стоимость самого трансформатора, так и стоимость электроэнергии, не отданной потребителю, также затраты, необходимые на восстановление дорогостоящего оборудования. Основные причины значимых повреждений силовых трансформаторов в эксплуатации связаны в первую очередь с повреждениями обмоток, высоковольтных вводов, устройств "Регулирования под нагрузкой" (РПН) как из-за развития дефектов под влиянием эксплуатационных факторов, так и из-за ошибочных или недостаточных действий при монтаже, ремонте и эксплуатации. На рисунке 1, показан график отказов элементов силового трансформатора, из него мы так же можем наблюдать, что основная доля отказов приходится на устройства РПН.

Поэтому следует рассмотреть принцип работы РПН, расположение в силовом трансформаторе.

Переключающие устройства трансформаторов необходимы для регулирования напряжения путем изменения соединения ответвлений обмоток между собой или с вводом. Как правило, они необходимы для обеспечения потребителей электрической энергией стандартного качества по напряжению. Отклонение напряжения от стандартных значений, может привести к нарушению работы электроустановок. К примеру, уменьшении напряжения в сети на 10%, приведет к уменьшению частоты вращения электродвигателей, возрастанию токов и нагреву обмоток ротора и статора. А также к сокращению сроков их работы; при длительном повышении напряжения на 10% резко сокращается (примерно втрое) срок службы электрических ламп накаливания.

Рис. 1. График отказов элементов силового трансформатора.

На рисунке 2 приведена схема РПН, в которой указана последовательность работы контактов. В одном из номинальных режимов или переключений переключающего устройства оба токосъемных контакта переключателя (Π_1 и Π_2) установлены в одном ответвлении регулировочной обмотки трансформатора.

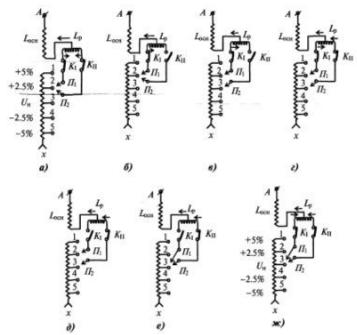


Рис.2. Схема работы переключающего устройства при симметричном включении реактора. Π_1 и Π_2 -контакты переключателя, K_I и K_{II} - контакты реактора, L_p - реактор, $I_{\rm H}$ агрузочный ток (на рисунке показан стрелками).

В нормальном режиме ток между токосъемными контактами делится поровну, при возникновении необходимости перейти на другое ответвление необходимо, сначала с помощью приводного механизма разомкнуть контакт K_{II} (Рис. 2б), при разрывании тока возникает электрическая дуга. после ее погасания весь нагрузочный ток проходит через вторую половину переключателя, переключатель Π_2 далее спокойно переходит на другое положение. Таким образом оказывается, что они соединены между собой через реактор, затем разрывается контактор K_{I} , разрывающий ток, равный сумме (или разности) циркулирующего тока и половины нагрузочного тока. После погасания электрической дуги весь нагрузочный ток проходит через второй переключатель. Далее при переключении переключателя Π_2 , контакт K_{II} вновь замыкается.

Сопротивление реактора выбирается таким образом, чтобы ток при замыкании секции составлял:

$$Ic = \frac{\Delta U}{Zp} \le 0.5I$$
H

где, ΔU - напряжение одной ступени регулирования;

Zp - полное сопротивление реактора;

Ін - номинальный ток регулируемой обмотки трансформатора.

Для того, чтобы не допустить выход из строя силовых электроустановок на трансформаторной подстанции, необходимо производить постоянный контроль электрооборудования. Это также относится к устройствам РПН.

К традиционным методам диагностики устройства РПН относится:

- 1. Испытание трансформаторного масла;
- 2. Измерение давления контактов;
- 3. Измерение крутящего момента;
- 4. Измерение сопротивления элементов РПН;
- 5. Измерение коэффициента трансформации
- 6.Снятие круговых диаграмм переключающих устройств;
- 7. Снятие осциллограмм в контактах быстродействующих устройств РПН.

Данные методы требуют большой трудоёмкости, например слива трансформаторного масла и так далее. Избежать этого помогут автоматизированные методы контроля устройств РПН. Одним из таких методов является "Снятие осциллограмм токов РПН в режиме интродиагностики", рассмотрим его более подробно.

Как и было сказано ранее, традиционные методы диагностики требуют достаточно трудоемкие процедуры. Данный метод позволяет произвести контроль, не прибегая к таким действиям. Изначально следует сказать, что осциллограмма токов при переключении контактора существенно отличается от типовой (из-за влияния индуктивности обмотки), однако математическая обработка позволяет привести ее к исходной. На рисунке 3 показана схема осциллографирования контактора контактора силового трансформатора без вскрытия бака РПН.

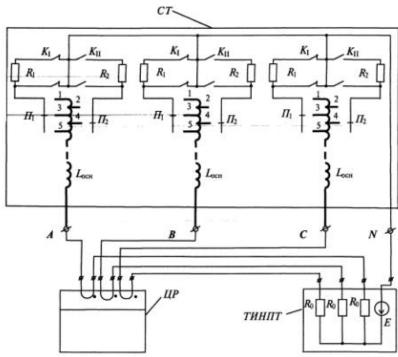


Рис.3. Схема осциллографирования контактов контактора силового трансформатора без вскрытия бака регулятора под нагрузкой.

СТ - силовой трансформатор; ЦР - цифровой регистратор; ТИНПТ - трехканальный источник напряжения постоянного тока; $K_{\rm I}$, $K_{\rm II}$ - контактная схема РПН; $R_{\rm 1}$, $R_{\rm 2}$ - токоограничивающие резисторы; $\Pi_{\rm 1}$, $\Pi_{\rm 2}$ - переключатели, E - источник напряжения постоянного тока; $L_{\rm och}$ - индуктивность основной обмотки; $R_{\rm 0}$ - внутреннее сопротивление источника.

Диагностирование, с помощью данной схемы осуществляется следующим способом. Сначала оператор переводит электрический привод РПН в положение "1", производит включение ТИНПТ. До того пока не установятся токи в фазах оператор будет наблюдать на осциллографе плавное увеличение тока, после установки тока в фазах, оператор подает команду пуска и с помощью электрического привода переводит РПН в положение "2", в момент переключения контакторов происходит пофазное снижение токов, ЦР записывает их и сохраняет в памяти. После окончания осциллографирования токов данные из памяти ЦР поступают через порт связи в персональный компьютер. Пример такой осциллограммы показан на рисунке 4.

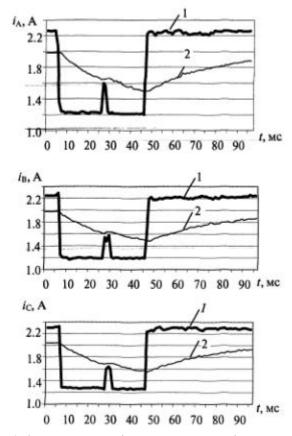


Рис.4. Осциллограмма фазных токов трансформатора. 1 - традиционный метод измерения;

2 -измерения с учетом влияния индуктивности обмотки силового трансформатора.

По данным осциллограммам проверяют:

- 1. Отсутствие разрывов электрической цепи;
- 2. Продолжительность работы дугогасительных контактов в положении "мост";
- 3. Продолжительность переключения между моментами размыкания и замыкания вспомогательных и дугогасительных контактов.

Таким образом, следует сказать что данный метод позволяет оперативно определить состояние данного устройства РПН, а также указать в какой части устройства могла произойти неисправность. В современной электроэнергетике, в отличие от нескольких десятков лет назад, контролю уделяется большое внимание, так как, оборудование становится все более и более дорогостоящим, и производить его капитальный ремонт через определенные промежутки времени становится очень невыгодно. Автоматизированные методы контроля позволяют не только определять состояние данного устройства, но также, благодаря записи в память, производить сравнение результатов с прошлыми измерениями. Все это направлено на повышение надежности как самого электрооборудования, так и надежность энергоснабжения потребителей.

Библиографический список

- 1. Михеев Г.М. Цифровая диагностика высоковольтного электрооборудования. М.: Издательский дом "Дюдэка-XXI", 2008. 304 с.
- 2. Инструкция по монтажу, эксплуатации и ремонту переключающих устройств РС-9 // ЕА 500.1г, София, Болгария. 2002. 50 с.
- 3. Оперативная диагностика контактора быстродействующего регулятора силового трансформатора / Г.М.Михеев, Ю.А.Федоров, В.М.Шевцов, С.Н. Баталыгин // Электрические станции, 2006. №4. С 54-61.