Казанский федеральный университет

Кафедра технологии нефти, газа и углеродных материалов

Kazan Federal University

Department of oil & gas technology and carbon materials

Гидроочистка дизельного топлива Hydrotreating of diesel fuel

Тулибаев Азимжон Нематжонович, Tulibaev Azimjon Nematjonovich ¹ Кемалов Руслан Алимович, Kemalov Ruslan Alimovich ²

магистрант кафедры технологии нефти, газа и углеродных материалов 1 кандидат технических наук, доцент кафедры технологии нефти, газа и углеродных материалов, Член Экспертного совета Российского газового общества (РГО), и.о.руководителя группы «Водородная и альтернативная РГО, профессор РАЕ 2

E-mail: Tulibaye777@gmail.com¹, kemalov@mail.ru²

Аннотация: В данной статье рассматривается процесс облагораживания дизельной фракции, в среде циркулирующего водородсодержащего газа, при высоком давлении и температуре, с целью удаления сераорганических вешеств.

Abstract: This article discusses the process of upgrading the diesel fraction in an environment of circulating hydrogen-containing gas, at high pressure and temperature, in order to remove organosulfur substances.

Ключевые слова: нефть, дизельное топливо, фракция, водорода содержащий газ, водород, сера.

Keywords: oil, diesel fuel, fraction, hydrogen containing gas, hydrogen, sulfur.

Введение

В настоящий момент промышленность нефтепереработки имеет множество нерешенных проблем, которые связаны с введением более жестких требований, с целью получения экологически чистых моторных топлив высокого класса.

Сравнительно быстро в других странах меняются требования на бензин, керосин и дизельное топливо, тем самым вынуждая инвестировать денежные средства в постройку новых и в модернизацию действующих установок [1].

В России автомобили с дизельным двигателем не имели большого успеха на рынке согласно данным агентства «Автостат», в целом по рынку на дизель приходится лишь 5-5,5%, а среди иномарок — 7-8%. Слабая популярность среди российских автолюбителей объяснялась тем, что на заправках долгое время отсутствовало качественное дизельное топлива. А в 2007 году автомобилей с дизельным двигателем на российских дорогах была и вдвое меньше — 2,9%. Рост популярности объясняется тем, что появились в продаже новые модели авто, работающие на дизельном двигателе, которые можно было приобрести за относительно малую сумму и в дальнейшем беспроблемно их обслуживать. Расход топлива у дизельного двигателя, на 20-25% меньше чем у бензиновых с такими же характеристиками и мощностью автомобиля [2].

В России принято законодательством два стандарта на дизельное топливо: ГОСТ 305-82 и ГОСТ Р 52368-2005. Из двух стандартов, последний идентичен требованиям в европейских странах (EN 590). Увеличение выпуска качественного топлива возможно достигнуть за счет привлечения вторичных дистиллятов в качестве сырья. Кроме этого предусматривается уменьшение присутствия ароматических углеводородов и повышении цетанового числа не ниже 51 (Евро 5). Производство такого топлива невозможно без добавления цетаноповышающих присадок. В зимнее время добавляют депрессорные присадки [1].

Понятие процесса гидроочистки

Гидрообессеривание — процесс облагораживания сырья на активной поверхности катализатора, в среде водородсодержащего газа (ВСГ). В отличии от гидрокрекинга, процесс проходит в более мягких условиях. Гидрокрекинг проводится при температуре T = 330-450 °C и давлении P = 5-30 МПа.

Процессу подвергается различное сырье, полученное в результате первичной перегонке нефти, так и при вторичных термокаталитических процессах [2].

На кинетику процесса оказывает значительное влияние ряд факторов: температура, давление, парциальное давление водорода, время контакта сырья с катализатором в реакционной зоне, активность катализатора.

Некоторые эти параметры невозможно контролировать оператору технологической установки. Управление процессом, в первую очередь, осуществляется за счет изменение температуры в реакционной зоне.

При гидрообессеривании происходит разделение сераорганических и частично кислород- и азотсодержащих соединений. Далее продукты разложения насыщаются водородом с образованием простых соединений, таких как сероводород, вода, аммиак, а также предельные и ароматические углеводороды.

Химизм процесса гидроочистки дизельного топлива

В процессе протекают четыре основных группы химических реакций:

- превращение сераорганических соединений в соответствующие углеводороды и сероводород;
- превращение органических соединений азота в соответствующие углеводороды и аммиак;
- превращение кислородсодержащих органических соединений в соответствующие углеводороды и воду;
 - насыщение олефинов, гидрирование ароматики;

При сгорании сернистого дизельного топлива происходит окисление серы с образованием SO2, который, в свою очередь, является первичным сернистым соединением и выбрасывается с отработанными выхлопными газами. Продукты сгорания при контакте с водой, образуют серную и сернистую кислоты, вызывающие коррозию металла. Кроме того, из-за содержания серы увеличивается износ двигателя, работающий на дизельном топливе, сокращается срок службы моторного масла. В зависимости от

строения сернистые соединения превращаются в парафиновые или ароматические соединения с выделением сероводорода:

Скорость реакций гидрообессеривания зависит от структуры строения вещества.

Азотистые соединения в сырье представлены в виде аминов, пирролов, пиридинов и хинолина.

Удаление азота в процессе гидроочистки происходит значительно труднее, чем удаление серы.

Кислород в составе органических соединений, таких как фенолы, высокомолекулярные спирты, удаляется в результате гидрирования кислородсодержащей связи с образованием воды и соответствующего углеводорода.

Кроме описанных выше реакций вероятны реакции насыщения олефинов. Олефины гидрируются, превращаясь в соответствующие парафины или нафтены.

Катализаторы гидрогенизационных процессов и механизм их действия

Разработка и выпуск эффективных катализаторов для процессов нефтепереработки относятся к первостепенным задачам современной науки и химической технологии. В большинстве мировых и Российских предприятиях наибольшее распространение получили алюмокобальтмолибденове (АКМ), алюмоникель молибденовые (АНМ) и смешанные алюмоникелькобальтмолибденовые (АНКМ) катализаторы.

В процессах глубокого гидрирования соединений с содержанием азота, а также ароматических соединений, парафинов и масляных фракций, применяют алюмоникель- или алюмокобальтвольфрамовые катализаторы (АНВ или АКВ).

АКМ и АНМ катализаторы гидроочистки содержат 2-4 % масс. кобальта или никеля9-15 % масс. МоОЗ на активном _-оксиде алюминия. Перед началом процесса катализатор подвергают активации (осернению) в потоке

водорода и сероводорода, переводят из оксидной формы, в сульфидную, при этом существенно возрастает каталитическая активность катализатора [3].

Активность АКМ и АНМ катализаторов зависит как от суммарного содержания в них гидрирующих компонентов (Со+Мо или Ni+Мо), так и от отношения Со/Со+ Мо и Ni/Ni+ Мо. У большинства марок зарубежных катализаторов гидроочистки суммарное содержание гидрирующих компонентов составляет 16-21 % масс., а отношение Со(Ni)/Со(Ni) +Мо колеблется в пределах 0,17 - 0,28. У отечественных катализаторов АКМ, АНМ и АНМС эти показатели составляют соответственно 16 и 0,52. На предприятии ОАО «Газпронефть- Омский НПЗ»,установке «гидроочистка дизельного топлива» общей производительности 3 млн. т в год применяют катализатор компании ALBEMARLE марки КF 770 и получают дизельное топливо с остаточным содержанием серы 10 ррт (0,001%).

После чего очищенное дизельное топливо поступает в товарный парк где добавляются присадки различного типа.

Характеристика сырья и продуктов

Глубина очистки дистиллятов от серы и других соединений зависит от типа углеводородного сырья, температуры процесса, парциального давления водорода, кратности циркуляции ВСГ, объемной скорости подачи сырья в реакционную зону.

Процессу подвергают прямогонные фракции: дизельное топливо, реактивное топливо, бензин, вакуумные газойли, а так же продукты вторичной переработки: пиролизная смола, лёгкие газойли коксования и бензины каталитического крекинга.

Степень очистки от серы уменьшается с утяжелением сырья, так как большая его часть находиться в жидкой фазе, а соответственно увеличивается вязкость и снижается растворимость водорода. Тем самым скорость диффузии водорода через тонкую плёнку жидкости на активную поверхность катализатора снижается. Катализаторы имеют термостойкие носители с высокой механической прочностью, так как плотно адсорбирующиеся на

поверхности катализатора ароматические углеводороды, смолы, нафтены, снижают активность катализатора и, следовательно, степень очистки от сернистых соединений.[5]

Основной реактор процесса

Основным оборудованием процесса является реактор гидроочистки дизельного топлива. Реактор представляет собой вертикальный цилиндрический сосуд с шаровыми днищами. Он отличается меньшим отношением высоты аппарата к диаметру, заполнение катализатора в два слоя.

Между двумя слоями подается холодный ВСГ (квенч) для поддержания равномерной температуры в реакторе.

Фарфоровые шарики предотвращают шевеление катализатора и задерживают продукты коррозии [6].

Сырье подается через штуцер, расположенный в верхушке реактора и равномерно распределяется по всему сечению аппарата. В целях очистки сырья от механических примесей используют сетчатые корзины, погруженные в верхний слой катализатора. В верхней части катализатора происходит деметаллизация и деазотирование.

Металлы закупоривают поры катализатора, азот отравляет активные центры. В нижнем слое происходит реакции удаления сераорганических соединений. В нижней части реактора устанавливается перфорированный барабан, поверх него натянуты два слоя сетки, для предотвращения уноса катализатора с продуктами реакции. В верхней части реактора устанавливается распределительная тарелка, во избежание «удара» паров продукта [4].

По завершению процесса гидрирования, длительность которого определяется степенью понижения активности катализатора, один из блоков установки переводят на регенерацию катализатора.

Регенерацию катализатора проводят путем выжига кокса, при температуре до 550°C, отложившегося на поверхности катализатора. Наряду с коксом на поверхности катализатора удерживаются незначительное

количество высокомолекулярных соединений богатые водородом. При подаче газо-воздушной смеси, возникают вспышки с подъемом температуры до 600°С. В связи с этим происходит частичное разрушение активной поверхности катализатора. Для предотвращения вспышек используют экстракцию этих высокомолекулярных соединений дистиллятными нефтепродуктами.

Расчётная часть гидроочистку дизельного топливо

Расчет блока гидроочистки дизельного топлива

Исходные данные

Производительность установки по сырью составляет 281731,92 кг/ч или 2298932,47 т/год.

$$G := 281731.92$$
 $F := 2298932.47$

В качестве сырья используется прямогонная дизельная фракция 240-320 °C и 320-360 °C Характеристика сырья:

– дизельная фракция 240-320 °C; плотность – 849,5 кг/м3; содержание серы – 2,1 % мас.

$$G_{240} := 162397.5$$
 Kr/4 $\rho_{240} := 849.5$ $S_{240} := 2.1$

- дизельная фракция 320-360 °C; плотность - 940 кг/м3; содержание серы - 3,2 % мас

$$G_{320} := 119334.4 \text{ Kr/4} \qquad \rho_{320} := 940 \qquad S_{320} := 3.2$$

Остаточное содержание серы в очищенном дизельном топливе SK < 0,00001 % мас.

Sk := 0.00001

Таблица 1 Состав исходного сырья

Компоненты	м ³ /ч	% масс	кг/ч
Д.ф. 240-320	191.17	57.64	162397.5
Д.ф. 320-360	126.95	42.36	119334.4

Массовая доля дизельной фракции 240-320 °C 0.5764

$$md_{240} := 0.5764$$

Массовая доля дизельной фракции 320-360 0.4236

$$md_{320} := 0.4236$$

Определение содержания серы в сырье

Массовое содержание серы в дизельной фракции 240-320 находим по формуле,кг/ч

$$G_{s240} := \frac{G_{240} \cdot S_{240}}{100} = 3410.35$$

Массовое содержание серы в газойлевой фракции находим по формуле, кг/ч

$$G_{s320} := \frac{G_{320} \cdot S_{320}}{100} = 3818.7$$

Общее количество серы в сырье находим по формуле,кг/ч

$$G_s := G_{s240} + G_{s320} = 7229.05$$

Процентное содержание серы в сырье (% мас.) находим по формуле

$$S_c := \frac{G_s \cdot 100}{G} = 2.566$$

Степень обессеривания рассчитываем по формуле

$$J := \frac{S_c - Sk}{S_c} = 99.99961.\%$$

Определение средней молекулярной массы сырья

По формуле Войнова находим молекулярные массы дизельных фракций 240-320 °C и 320-360 °C

$$MM_{240} := 60 + 0.3 \cdot \frac{240 + 320}{2} + 0.001 \left(\frac{240 + 320}{2}\right)^2 = 222.4$$

$$MM_{320} := 60 + 0.3 \cdot \frac{360 + 320}{2} + 0.001 \left(\frac{360 + 320}{2}\right)^2 = 277.6$$

Среднюю молекулярную массу сырья находим по формуле

$$M_{cp} := \frac{G_{240} + G_{320}}{\frac{G_{240}}{MM_{240}} + \frac{G_{320}}{MM_{320}}} = 242.855$$

Определение плотности сырья

Плотность сырья находим по формуле,кг/м³

$$\rho_{c} := \frac{1}{\frac{\text{md}_{240}}{\rho_{240}} + \frac{\text{md}_{320}}{\rho_{320}}} = 885.618$$

Материальный баланс реакторного блока

Исходные данные:

- кратность циркуляции водородсодержащего газа, нм³/м³

К_ц := 600 - давление – 4 МПа;

$$P := 4$$

- алюмокобальтмолибденовый катализатор

температура процесса - 350 °C

$$T := 273 + 350 = 623$$
 K

Выход гидроочищенного топлива

Выход гидроочищенного дизельного топлива ВДТ (% мас.) на исходное сырье равен

где B6, Br, ΔS – выходы бензина, газа и количество удаленной из сырья серы соответственно на сырье, % мас

Бензин и газ образуются преимущественно при гидрогенолизе сернистых соединений. Количество моль 100 кг. сырья при средней молекулярной массе составляет, кмоль/ч....

$$Ncp := \frac{100}{M_{cp}} = 0.412$$

Количество серы, кмоль/ч

$$N_s := \frac{S_c}{32} = 0.08$$

Содержание серосодержащих соединений от общего числа молекул, %

$$C_s := \frac{N_s \cdot 100}{Ncp} = 19.473$$

Если принять равномерное распределение атомов серы по длине углеводородной цепочки, то при гидрогенолизе сероорганических соединений с разрывом у атома серы выход бензина и газа составит

$$\Delta S := S_c - Sk = 2.565922$$
 %
 $B6 := \Delta S = 2.565922$
 $Br := 0.3 \cdot \Delta S = 0.77$

Тогда выход дизельного топлива будет равен, % масс:

$$B\pi r := 100 - B6 - Br - \Delta S = 94.098$$

Расход водорода на гидроочистку

Водород в процессе гидроочистки расходуется на:

- 1) гидрогенолиз сероорганических соединений:
- 2) гидрирование непредельных углеводородов;
- 3) отдув ЦВСГ для поддержания заданной концентрации водорода;
- 4) расход на растворение в гидрогенизате;
- потери из-за механических неплотностей в аппаратуре и коммуникациях.
 Расход водорода на гидрогенолиз сероорганических соединений находят по формуле, %масс

$$G = m*S$$

где G1 — расход 100 %-го водорода, % мас. на сырье; S — количество серы, удаляемое при гидроочистке, % мас. на сырье; m — коэффициент, зависящий от характера сернистых соединений: сероводород — 0; свободная сера — 0,0625; меркаптаны — 0,062; сульфиды — 0,125; дисульфиды — 0,0938; тиофены — 0,25;

бензтиофены - 0,187; тиофаны - 0,125.

Поскольку в нефтяном сырье присутствуют различные сернистые соединения, определяется расход водорода на гидрогенолиз каждого из них, и полученные результаты суммируются.

Наиболее стабильны при гидроочистке тиофеновые соединения, поэтому при расчете принимаем, что вся остаточная сера 0,00001 % мас. на сырье в гидрогенизате — тиофеновая, а остальные сероорганические соединения разлагаются полностью.

содержание серы в сырье — 2,566 % мас., в том числе; сульфидной — 1,424 % мас.; дисульфидной — 0,429 % мас.; тиофеновой — 0,713 % мас При этом получаем:

$$G_{H1} := 1.424 \cdot 0.125 + 0.429 \cdot 0.0938 + (0.713 - Sk) \cdot 0.25 = 0.396$$

Расход водорода на отдув появляется в связи с тем, что для поддержания оптимального его парциального давления приходится непрерывно выводить (отдувать) из системы небольшую часть циркулирующего ВСГ и заменять его свежим. При отсутствии данных на предприятии можно принять расход 100 %-го водорода на отдув при гидроочистке дизельной фракции 0,03–0,04 % мас. на сырье. Принимаем расход водорода на отдув $G_{H2} = 0,04$ % мас. на сырье.

Молекулярная масса водорода

$$M_{H2} := 2$$

Потери водорода через неплотности можно определить по формуле, % масс

$$G_{H3} := \frac{K_{tt} \cdot M_{H2}}{22.4 \cdot \rho_c} = 0.06$$

Для приближенных расчетов общего расхода водорода можно использовать ориентировочные данные по расходу водорода на растворение $G_{H4} = 0.08 \, \%$ мас.

Таким образом, общий расход водорода в процессе гидроочистки будет равен, % масс

$$G_H := G_{H1} + 0.04 + G_{H3} + 0.08 = 0.577$$

Состав ЦСВГ представлен в таблице 1

Компонент	мас. д.	% об.
Водород	0,410	91,64
Метан	0,124	3,36
Этан	0,119	1,84
Пропан	0,185	1,89
и-бутан	0,064	0,43
н-бутан	0,051	0,52
Пентаны	0,047	0,32
Всего	1,00	100,00

Средняя молекулярная масса ЦВСГ находится по формуле:

$$M_{\underline{\mathbf{u}}} := \sum M \mathbf{i} \cdot \mathbf{y} \mathbf{i}$$

где М - молекулярная масса компонента, у - объемная доля компонента

$$\mathbf{M_{II}} := 0.9164 \cdot 2 + 0.0336 \cdot 16 + 0.0184 \cdot 30 + 0.0189 \cdot 44 + 0.0095 \cdot 58 + 72 \cdot 0.0032 = 4.535$$

Расход ЦВСГ на 100 кг сырья находим по формуле

$$G_{I\!I\!I\!B} := \frac{100 \cdot K_{I\!I\!I} \cdot M_{I\!I\!I}}{22.4 \cdot \rho_{C}} = 13.717$$

-Общий-раєход ЦВСГ-єоставит,кг/ч-

$$G_{IJ} := \frac{G \cdot G_{IJB}}{100} = 38646$$

Рассчитываем выход сероводорода по формуле, % масс.

$$G_{H2S} := \Delta S \cdot \frac{34}{32} = 2.726$$

Таким образом, балансовым сероводородом поглощается, % масс водорода

$$L := G_{H2S} - \Delta S = 0.16$$

Количество водорода, вошедшего при гидрировании в состав дизельного топлива, равно. % масс

$$R := G_{H1} - L = 0.236$$

Уточненный выход гидроочищенного дизельного топлива составляет, % масс

$$Bдт := Bдт + R = 94.334$$

Состав и количество ЦВСГ приведены в табл. 2 Таблица 2 Состав ЦВСГ

Компонент	масс. доли	% об.	кг/ч
Водород	0,410	91,64	15844,86
Метан	0,124	3,36	4792,1
Этан	0,119	1,84	4598,87
Пропан	0,185	1,89	7149,51
і-Бутан	0,064	0,43	2473,34
n-Бутан	0,051	0,52	1970,95
Пентан	0,047	0,32	1816,36
Bcero	1,000	100	38646

Результаты расчетов материального баланса приведены в табл. 3

Таблица 3 Материальный баланс реактора

Приход	кг/ч	% масс.	Расход	кг/ч	% масс.
1. Сырье	281732	100	1.Газопродуктовая	282850,46	
2. ЦВСГ в	38646	13,72	смесь:		
том числе			- гидрогенизат	265771,88	94,335
водород	15844,86	5,62	- сероводород	7680	2,726
			- сухой газ	2169,34	0,77
			- бензин	7229,24	2,566
			2. ЦВСГ в том	37020,4	13,14
			чи сле водород	14230	5,05
			3. Потери	507,14	0,18
Итого	320378	113,72	Итого	320378	113,72

Тепловой расчет реактора

Тепловой баланс реактора можно записать в следующем виде (без учета тепловых потерь в окружающую среду):

$$Q_c + Q_{LBC\Gamma} + Q_S + Q_H = \sum Q_n$$

где Q_c — тепло, вносимое в реактор с сырьем, кДж/ч; $Q_{\text{ЦВСГ}}$ - тепло, вносимое в реактор с ЦВСГ, кДж/ч; Q_s — тепло, выделяемое при протекании реакций гидрогенолиза сернистых соединений, кДж/ч; Q_H — тепло, выделяемое при протекании реакций гидрирования непредельных углеводородов, кДж/ч; ΣQ_n — тепло, отводимое из реактора реакционной смесью, кДж/ч.

Средняя теплоемкость реакционной смеси при гидроочистке незначительно изменяется в ходе процесса, поэтому тепловой баланс реактора можно записать в следующем виде:

$$G^*c^*t_0 + \Delta S^*q_S + \Delta C_{H^*}q_H = G^*c^*t$$

 $t = t_0 + (\Delta S^*q_S + \Delta C_{H^*}q_H)/(G^*c)$

где G — суммарное количество реакционной смеси, % мас.; с — средняя теплоемкость реакционной смеси, кДж/кг·К; Δ S, Δ C_H — количество серы и непредельных углеводородов, удаленных из сырья, % мас.; t, t₀ — температуры на

входе в реактор и при удалении серы, ^оС; q_S , q_H — тепловые эффекты гидрирования сернистых и непредельных соединений, кДж/кг.

Суммарное количество реакционной смеси на входе в реактор 113,72 % мас. Количество серы, удаленной из сырья, составляет $\Delta S = 2,566$ % мас. Количество тепла, выделяемое при гидрогенолизе сернистых соединений при заданной глубине обессеривания, равной 0,99999 находим по формуле, кДж

$$Q_S = \sum q_{si} * g_{si}$$

где q_{Si} — тепловые эффекты гидрогенолиза отдельных сероорганических соединений (табл. 7.6), кДж/кг; g_{Si} — количество разложенных сероорганических соединений (при расчете на сырье оно численно равно содержанию отдельных сероорганических

Состав циркулирующего ВСГ представлен в табл.2

$$C_{BC\Gamma} := 0.410 \cdot 14.57 + 0.124 \cdot 3.35 + 0.119 \cdot 3.29 + 0.185 \cdot 3.23 \dots = 7.891 + 0.064 \cdot 3.18 + 0.051 \cdot 3.18 + 0.047 \cdot 3.12$$

Энтальпию паров сырья (кДж/кг) находим по формуле

$$L_t^{\pi} := (129.58 + 0.134 \cdot T + 0.00059 \cdot T^2) \cdot (4 - \rho_{15}^{-15}) - 308.99$$

где р₁₅15 - относительная плотность сырья

Относительная плотность сырья находится по уравнению

$$\rho_{15}^{15} := \rho + 5 \cdot a$$

где а - средняя температурная поправка, приведена в таблице 6

соединений в % мас.), кг.

Таблица 4 Тепловой эффект реакции гидрирования органических соединений серы

$q_{\scriptscriptstyle S}$, кДж/кг		
300 K	800 K	
1850	2100	
3300	3500	
4200	5060	
3600	3810	
3260	3700	
8150	8700	
	300 K 1850 3300 4200 3600 3260	

$$Q := 1.424 \cdot 3500 + 0.429 \cdot 5060 + (0.713 - Sk) \cdot 8700 = 13357.75$$

Теплоемкость ВСГ (кДж/кг-К) можно найти по формуле

$$C_{BC\Gamma} = \sum C_{pi} * y_i$$

где Срі — теплоемкость отдельных компонентов с учетом поправок на температуру и давление, кДж/кг·К; уі — массовая доля каждого компонента в ВСГ.

Теплоёмкость	H ₂	CH ₄	C ₂ H ₆	C ₃ H ₈	C ₄ H ₁₀
c_p , кДж / (кг · К) c_p , ккал / (кг · °С)	14,570 3,480	3,350 0,800	3,290 0,786	3,230 0,772	3,180 0,760

Таблица 6 Средняя температурная поправка для плотности жидких нефтепродуктов

P 4	а	P 4	а
0,7000-0,7099	0,000897	0,8500-0,8599	0,000699
0,7100-0,7199	0,000884	0,8600-0,8699	0,000686
0,7200-0,7299	0,000870	0,8700-0,8799	0,000673
0,7300-0,7399	0,000857	0,8800-0,8899	0,000660
0,7400-0,7499	0,000844	0,8900-0,8999	0,000647
0,7500-0,7599	0,000831	0,9000-0,9099	0,000633
0,7600-0,7699	0,000818	0,9100-0,9199	0,000620
0,7700-0,7799	0,000805	0,9200-0,9299	0,000607
0,7800-0,7899	0,000792	0,9300-0,9399	0,000594
0,7900-0,7999	0,000778	0,9400-0,9499	0,000581
0,8000-0,8099	0,000765	0,9500-0,9599	0,000567
0,8100-0,8199	0,000752	0,9600-0,9699	0,000554
0,8200-0,8299	0,000738	0,9700-0,9799	0,000541
0,8300-0,8399	0,000725	0,9800-0,9899	0,000522
0,8400-0,8499	0,000712	0,9900-1,0000	0,000515

При плотности 885 кг/м³ температурная поправка составляет 0.00066

$$\left[\rho_{15}^{15}\right] := \frac{\rho_{c}}{1000} + 5 \cdot a$$
$$\left[\rho_{15}^{15}\right] = 0.889$$

$$\begin{bmatrix} I_{350}{}^{\pi} \end{bmatrix} := \left(129.58 + 0.134 \cdot T + 0.00059 \cdot T^2\right) \cdot \left(4 - \begin{bmatrix} \rho_{15}{}^{15} \end{bmatrix}\right) - 308.99$$

$$I_{350}^{\Pi} = 1066.29$$

Поправку на давление находим по значениям приведенных температуры и давления.

Абсолютная критическая температура сырья находится по формуле, ^оС

$$t_{\kappa p} = 1.05 * t_{\infty} + 160 ° C$$

где t_∞- средняя температура кипения фракции, ^оС

$$t_{KP} := 1.05 \cdot \frac{240 + 360}{2} + 160 = 475$$

$$T_{Kp} := t_{Kp} + 273 = 748$$
 K

Приведенная температура равна

$$T_{np} := \frac{T}{T_{Kp}} = 0.833$$

Критическое давление сырья (МПа) вычисляем по формуле

$$P_{KP} := \frac{0.1 \cdot T_{KP} \cdot K}{M_{CP}}$$

где $\underbrace{K}_{\text{WM}} = \frac{1.216 \cdot \left[273 + (240 + 360)\right]^{\frac{1}{3}}}{\left[\rho_{15}^{\quad \ 15}\right]} = 13.074$

$$\underset{\text{NAMPA}}{P} := \frac{0.1 \cdot T_{\text{KP}} \cdot K}{M_{\text{CD}}} = 4.027$$

Приведенное давление равно

$$P_{11p} := \frac{P}{P_{Kp}} = 0.993$$

Для определения энтальпии при давлении выше 0.4 МПа вводится поправка, которая определяется по формуле, кДж/кг

$$\frac{\Delta I \cdot M_{cp}}{T_{Kp}} := \frac{-4.4 \cdot P_{np}}{T_{np}}^{3}$$

$$\Delta I := \frac{T_{KP} \cdot (-4.4) \cdot P_{\Pi P} \cdot 4.184}{M_{CP} \cdot T_{\Pi P}^{3}} = -97.484$$

Энтальпия сырья с поправкой на давление равна, кДж/кг

$$\begin{bmatrix} \mathbf{I}_{\mathbf{\Pi}}^{350} \end{bmatrix} := \begin{bmatrix} \mathbf{I}_{350}^{\mathbf{\Pi}} \end{bmatrix} + \Delta \mathbf{I} = 968.8$$

Теплоемкость сырья определяется по формуле, кДж/кг*К

$$c_c := \frac{\left[I_n^{350}\right]}{T} = 1.555$$

Средняя теплоемкость реакционной смеси определяется по формуле, кДж/кг*К

$$c_{CM} := \frac{c_{C} \cdot 100 + C_{BC\Gamma} \cdot G_{IIB}}{100 + G_{IIB}} = 2.319$$

Подставив найденные величины в уравнение находим температуру на выходе из реактора, К:

$$T_{\mathbf{K}} := \frac{G_{\mathbf{K}} \cdot \mathbf{c}_{\mathbf{CM}} \cdot \mathbf{T} + Q}{G_{\mathbf{K}} \cdot \mathbf{c}_{\mathbf{CM}}}$$

где G - суммарное количество реакционной смеси, % масс.

$$G_{\kappa} := 113.72$$

$$T_{K} := \frac{G_{K} \cdot c_{CM} \cdot T + Q}{G_{K} \cdot c_{CM}} = 673.646$$

$$t_{K} := T_{K} - 273 = 400.646$$
 _{0C}

Максимально допустимая температура на выходе из реактора 410. В случае завышения предусмотрена подача холодного водородсодержащего газа в середину реактора между слоями катализатора.

Механический расчет реактора

Исходные данные:

производительность установки по сырью — 281731,92 кг/ч; объемная скорость подачи сырья — 5 ч-1;

$$\omega := 5$$

температура в реакторе – 350–401 °C; давление в реакторе – 4 МПа;

Средняя температура в реакторе, ⁰C

характеристика катализатора:

- насыпная плотность 640 кг/м3;
- кажущаяся плотность 1210 кг/м3;
- средний диаметр частиц 1,37·10-3 м

Размеры реактора

Объем катализатора в реакторе определяем по формуле, м³

$$V_k = V_C / \omega$$

где V_C — объем сырья при 20 0 C, м3/ч; ω — объемная скорость подачи жидкого сырья,ч⁻¹. Объем сырья при 20 0 C определяют по формуле, м³/ч:

$$V_C := \frac{G}{\rho_C} = 318.12$$

$$V_K := \frac{V_C}{W} = 63.624$$

Секундный объем смеси паров сырья и ЦВСГ при температуре и давлении на входе в реактор находим по формуле

где V_c — объем паров сырья при температуре (t) и давлении (P) в реакторе, м3/ч; $V_{BC\Gamma}$ — объем циркулирующего и свежего ВСГ при тех же условиях, м3/ч.

Объем паров сырья V_c на входе в реактор, м3/с при e=1,0 (е – доля отгона) определяется по формуле

Для этого сначала определяем объем паров сырья на входе в реактор по формуле, м³/с

$$V_c := 22.4 \cdot \frac{t_{cp} + 273}{273} \cdot \frac{0.1}{P} \cdot \frac{1}{3600} \cdot z \cdot \frac{G}{M_{cp}}$$

где G — расход сырья поступающего в реактор, кг/ч; z — коэффициент сжимаемости; t_{cp} — средняя температура в реакторе, 0 С; M_{cp} — средняя молекулярная масса сырья; P — давление в реакторе, МПа.

$$z := 0.15$$

$$V_{c} := 22.4 \cdot \frac{t_{cp} + 273}{273} \cdot \frac{0.1}{P} \cdot \frac{1}{3600} \cdot z \cdot \frac{G}{M_{cp}} = 0.064$$

Суммарный объем ВСГ ($V_{BC\Gamma}$) на входе в реактор определяют по формуле, м 3 /с

$$z = 1$$

$$V_{BC\Gamma} := 22.4 \cdot \frac{t_{cp} + 273}{273} \cdot \frac{0.1}{P} \cdot \frac{1}{3600} \cdot \frac{G_{tt}}{M_{tt}} \cdot z = 3.146$$

где G_{ij} — расход сырья поступающего в реактор, кг/ч; z — коэффициент сжимаемости, для газа значительно разбавленного водородом можно принять равным 1; t_{op} — средняя температура в реакторе, 0 C; M_{ij} — средняя молекулярная масса сырья; P — давление в реакторе, $M\Pi$ a.

Находят секундный объем смеси паров сырья и ЦВСГ при температуре и давлении на входе в реактор, м³/с

$$V_{CM} := V_{C} + V_{BC\Gamma} = 3.21$$

Находим сечение реактора по формуле, м2

$$F := \frac{V_{CM}}{U}$$

где и - линейная скорость движения сырья, м/с

u := 0.4

$$F := \frac{V_{CM}}{U} = 8.026$$

Находим диаметр реактора по формуле, м

$$d := \sqrt{\frac{4 \cdot F}{\pi}} = 3.197$$

Округляем диаметр реактора до 3.2 метра

$$d := 3.2$$

Находим новое сечение реактора по формуле, м²

$$F := \frac{\pi \cdot d^2}{4} = 8.042$$

Зная сечение аппарата и объем катализатора, определяем высоту слоя катализатора по формуле, м

$$\mathbf{h_{KaT}} := \frac{\mathbf{V_K}}{\mathbf{F}} = 7.911$$

Реактор заполняют катализатором на 2/3 высоты цилиндрической части аппарата. Высоту цилиндрической части реактора находим по формуле,м:

$$h_{\text{цип}} := \frac{h_{\text{Kar}} \cdot 3}{2} = 11.886$$

Общую высоту реактора находим по формуле

$$H := \mathbf{h}_{\text{TIVIT}} + 2 \cdot \mathbf{h}_{\text{TIH}}$$

где h_{дн}- высота верхнего и нижнего днища,м.

$$\mathbf{h}_{\mathbf{\Pi}\mathbf{H}} := \frac{1}{2} \cdot \mathbf{d} = 1.6$$

$$H := h_{IIIVII} + 2 \cdot h_{IIIH} = 15.066$$

Общую высоту округляем до 15.1 м.

$$H := 15.1$$

Расчет гидравлического сопротивления реактора

Порозность слоя вычисляют по формуле

$$E := 1 - \frac{640}{1210} = 0.471$$

Среднюю молекулярную массу смеси определяют по формуле

$$M_{\text{cap}} := \frac{G + G_{\text{U}}}{\frac{G}{M_{\text{cp}}} + \frac{G_{\text{U}}}{M_{\text{U}}}} = 33.093$$

По уравнению Фроста находим динамическую вязкость смеси, Па*с:

$$\mu := (t_{\text{cp}} + 273) \cdot (6.6 - 2.25 \cdot log(M_{\text{cp}})) \cdot 10^{-8} = 2.061 \times 10^{-5}$$

Средний диаметр частиц катализатора принимаем d_u=3·10⁻³ м.

$$d_{u} := 3 \cdot 10^{-3}$$

Общий объем смеси равен, м3/ч

$$V_{CM} := V_{CM} \cdot 3600 = 11557.74$$

Плотность реакционной смеси в условиях процесса определяем по формуле, кг/м³

$$\rho := \frac{G + G_{\underline{I}\underline{I}}}{V_{\underline{CM}}} = 27.72$$

Линейная скорость потока равна, м/с

$$u := \frac{4 \cdot V_{CM}}{3.14 \cdot d^2} \cdot \frac{1}{3600} = 0.399$$

Потерю напора в слое катализатора вычисляют по формуле, кг/м²

$$\Delta P := \left[\frac{150 \cdot (1 - E)^2 - 0.1 \cdot \mu \cdot u}{E^3 \cdot d_{\mathbf{q}}^2} + \frac{1.75 \cdot (1 - E) \cdot \rho \cdot u^2}{E^3 \cdot d_{\mathbf{q}} \cdot 9.81} \right] \cdot H = 20642.68$$

Гидравлическое сопротивление в МПа

$$\frac{\Delta P}{10^5} = 0.206$$

Таким образом, потеря напора катализатора не превышает предельно допустимых значений 0,2-0,3 МПа.

Заключение

Использование процесса облагораживания позволяет значительно улучшить качество нефтепродуктов. Снижается содержание серы в топливе, что благоприятно влияет на экологию окружающей среды, уменьшается количество, азотистых соединений, металлоорганических соединений, негативно влияющих на работу двигателя в целом. С применением более активного катализатора добиваются положительных оценок со стороны качества и экологии. Требуется разработка более эффективных катализаторов, модернизация реакторов и увеличение их числа.

Все эти положительные результаты вполне позволяют дизельному топливу быть востребованным на рынке.

Литература

- 1. Аспель Н.Б., Демкина Г.Г. Гидроочистка моторных топлив. Л.: Химия, 1977. 160 с.
- 2. Ахметов С.А. Технология глубокой переработки нефти и газа. -Уфа: Гилем, 2002.- 672 с.
- 3. Черножуков Н.И. Технология переработки нефти и газа. Ч.3: Очистка и разделение нефтяного сырья, производство товарных нефтепродуктов / А. А. Гуреева и Б. И. Бондаренко М.: Химия, 1978, 424 с.
- 4. Сомов В.Е., Садчиков И.А., Шершун В.Г., Кореляков Л.В. Стратегические приоритеты российских нефтеперерабатывающих предприятий. М.: ЦНИИТЭнефтехим, 2002, 122 с.
 - 5. Л.А. Горбач, Вестник Казан. технол. ун-та, 17, 312-315 (2014).
- 6. Д.А. Халикова, Т.С. Меньшикова, Вестник Казан. технол. ун-та, 9, 226-227 (2012).