УДК 621.396.6

Болдырев А.В. к.т.н., доцент, ФГБОУ ВО ДГТУ; Мищенко Д.А. магистрант, гр. УМАП21, ФГБОУ ВО ДГТУ.

# *SPICE*-МОДЕЛИРОВАНИЕ СИЛОВОЙ ЧАСТИ ИМПУЛЬСНОГО ПРЕОБРАЗОВАТЕЛЯ НАПРЯЖЕНИЯ

Аннотация. В работе рассматривается получение импульсной SPICE-модели силовой части SEPIC преобразователя в программе MicroCap 10 с целью исследования потерь на силовых элементах, а также проверка её адекватности путём сравнения с реальным прототипом

**Abstract.** This abstract describes the reception of pulse SPICE-model of the SEPIC power stage in MicroCap 10 for the purpose of investigation of losses on the power components, as well as checking its adequacy by comparing with the actual prototype.

Ключевые слова: SPICE-модели, импульсные источники питания.

Key words: SPICE-model, SEPIC, MicroCap, switching power supply.

### Введение

Импульсные модели позволяют детально исследовать процессы во временной области, например, переходные процессы в полупроводниковых приборах. Целью создания и исследования импульсной модели в данном случае является определение потерь в силовых элементах и общего КПД преобразователя.

### 1. Результаты моделирования

На рис. 1 показана импульсная модель силовой части преобразователя, в которой использованы стандартные элементы из библиотек резисторов, конденсаторов и индуктивностей и *SPICE*-модели полевого транзистора *Si*7370*DP* и диода *MBRS*360*T*3 [1, 2]. Нумерация элементов аналогична таковой в [3] для удобства.

Входное напряжение задано источником напряжения Vin. Параметр Vin\_DC позволяет варьировать величину входного напряжения для исследования схемы в различных режимах. Управление транзисторов VT3 осуществляется генератором импульсов V\_pwm, моделирующим выход ШИМ-контроллера.

32

<sup>©</sup> Электронный научный журнал «Инженерная Наука и Образование», 2015-2016



Рис. 1. Импульсная модель силовой части преобразователя

В качестве параметров генератора импульсов задана заданы частота коммутации преобразователя Fs = 150 кГц и коэффициент заполнения, определяемый постоянным выходным напряжением 15 В и варьируемым входным напряжением:

$$Don = \frac{1}{1 + \frac{Vin\_DC}{15}}.$$
(1)

В модели учтены также эквивалентные последовательные сопротивления дросселей и конденсаторов.

Анализ импульсной модели преобразователя проводится в режиме временного анализа (*Transident Analysis*). Процесс моделирования заключается в пошаговом решении программой *MicroCap* 10 системы дифференциальных уравнений, описывающих моделируемую схему, и выводе результатов в графическом виде. Подробное описание работы с программой *MicroCap* 10 можно найти в [4].

Для примера на рис. 2 показаны результаты анализа переходного процесса выключения транзистора VT3. На графиках хорошо видны типичные для полевого транзистора этапы процесса выключения, в частности, «плато», обусловленные эффектом Миллера.

Для расчёта средней мощности, рассеиваемой каким-либо элементом, необходимо вычислить интеграл от произведения напряжения, приложенного к его выводам, на протекающий через него ток и разделить на интервал времени интегрирования:

$$P = \frac{\int_{T_1}^{T_2} V(t)I(t)dt}{T2 - T1}.$$
(2)

<sup>©</sup> Электронный научный журнал «Инженерная Наука и Образование», 2015-2016



Рис. 2. Переходные процессы при закрытии транзистора

При ручных расчётах мощности потерь обычно используют различные аппроксимации переходных процессов. Использование встроенной функции интегрирования *SUM* программы *MicroCap* 10 берётся в конечной точке временного интервала. Например, для расчёта потерь в данном случае был выбран интервал времени 3...6 мс, а выражение для расчёта потерь на транзисторе *VT*3 было записано в следующем виде:

$$P = SUM((V(VT3.3) - V(VT3.2)) * I(R35), T, 3m) / 3m.$$
(3)

Подынтегральная функция представляет собой произведение разности напряжений между стоком и истоком транзистора на ток стока, проинтегрированное на интервале времени 3 мс.

Потери на диоде VD9:

$$P = SUM(V(VD9) * I(VD9), T, 3m) / 3m.$$
 (4)

Аналогичным образом можно рассчитать мощность, потребляемую от входного источника питания *Vin*, и мощность, рассеиваемую нагрузкой, что позволяет оценить КПД преобразователя:

$$P = \frac{SUM((V(R0) * I(R0)), T, 3m) / 3m}{-SUM((V(Vin) * I(Vin)), T, 3m) / 3m},$$
(5)

где *T* — время моделирования, 6 мс; выражение в числителе — мощность, потребляемая нагрузкой, в знаменателе — мощность, потребляемая от

<sup>©</sup> Электронный научный журнал «Инженерная Наука и Образование», 2015-2016

входного источника питания (знак минус указывает направление тока, вытекающего из источника питания).

Результаты расчёта КПД по данным моделирования и экспериментальные данные, взятые из графиков в статье [3], приведены в табл. 1 для двух значений входного напряжения. Результаты расчёта потерь на силовых элементах приведены в табл. 2.

| Входное       | Ток нагрузки, А | КПД, % |                 |
|---------------|-----------------|--------|-----------------|
| напряжение, В |                 | Модель | Эксперимент [3] |
| 12            | 0,9             | 91,5   | 92              |
|               | 1,5             | 88,3   | 90,5            |
| 24            | 0,9             | 91,6   | 92,5            |
|               | 1,5             | 90,6   | 92,5            |

Таблица 1. Расчётный и экспериментальный КПД преобразователя

Таблица 2. Расчётные потери на силовых элементах

| Входное       | Ток нагрузки, А | Потери на элементах, мВт |     |
|---------------|-----------------|--------------------------|-----|
| напряжение, В |                 | VT3                      | VD9 |
| 12            | 0,9             | 332                      | 395 |
|               | 1,5             | 539                      | 763 |
| 24            | 0,9             | 443                      | 379 |
|               | 1,5             | 728                      | 725 |

# Заключение

Сравнение значений КПД, полученных в результате моделирования и эксперимента, показывает достаточно близкое соответствие импульсной модели преобразователя своему реальному прототипу, что позволяет ещё на этапе разработки оценить потери в силовых элементах и КПД изделия.

# Список литературы

1. Si7370DP Datasheet. http://www.vishay.com/docs/71874/71874.pdf

2. MBRS360T3 Datasheet. <u>http://www.onsemi.ru.com/pub/Collateral</u> /MBRS360T3-D.PDF

3. Betten J., Kollman R. No Need to Fear: SEPIC Outperforms the Flyback. http://www.planetanalog.com/document.asp?doc\_id=527401

4. Амелина М.А., Амелин С.А. Программа схемотехнического моделирования *Micro-Cap*. Версии 9, 10. Смоленск, Смоленский филиал НИУ МЭИ, 2013.

<sup>©</sup> Электронный научный журнал «Инженерная Наука и Образование», 2015-2016