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Introduction 

The standard traveling salesman problem (TSP) involves finding an optimal 

route which minimizes the total travel distance in a group of cities such that 

each city is visited only once [1,2]. Several applications exist of the TSP in 

the field of routing and logistics [4], as well as graphic information 

processing [3]. Relatively lesser studied are the applications of the clustered 

traveling salesman [2,6]. In this study we modify the clustered TSP to solve 

a problem of cash logistics for a multiple collecting vehicles. 

In recent times there has been a large increase in the intensity of cash flows 

especially in emerging countries mainly because of the voluminous growth 

of the FMCG industry and retail. Money supply (M0) in Russia has 

increased more than 10 times between 2001 and 2011, with only 25% of 

this increase explained by inflation. Consequently the demand of delivery 

and encashment of money and treasures has also escalated. For taking 

advantage of this process top banks are attempting to develop their 

encashment services. Since large amounts of money are being transported it 

is important for the banks not just to optimize the routes for their vehicles, 

but also to consider the risk of loss of transported values.  

In this study we investigate Cash Logistics Problem (CLP) as an extension 

of the TSP by considering a values logistics with additional criteria of 

optimality and multiple vehicles routing. The model is applied for the raw 

data of the city of Perm. First we provide the general formulation of the 

CLP, after that we attempt to develop the optimal routing procedure for 

some of the optimality criteria. 

 

Mathematical statement of the CLP 
In the general statement of the CLP bank considers a set of objects, P, which 

should be serviced by the money collector (cash collection or delivery). 
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Each object has a geo-position information (address, longitude, latitude). 

The typical set for a large city contains several hundreds of objects (see 

example for city of Perm’s case on Fig. 1). 

 
Fig. 1. Map of Perm with the geo-positions of points. 

 

The following variables and constraints are specific to cash logistics 

problem: 

 Each object has its average money amount which should be 

collected or delivered, ( 1.. )i ip i n P c    . If this amount is 

collected, then ci >0, if delivered ci<0. 

 Each object has its average service time, 

( 1.. ) 0i ip i n P s     . 

 Each object has a time interval for service, 

( 1.. ) , : ; , [ , ]i i i i i i ip i n P ts tf tf ts ts tf Ts Tf      . 

Default values are: Ts =9, Tf =18. 

 Cost matrix, A = (aij), where aij is the cost (distance/time) between 

the i
th

 and j
th

 points, aij.> 0, aij ≠ aji , aii = 0.  

 m – number of routes in the routing network. 
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The task is to determine the optimal routing network for set of objects P 

consisting of m sub-networks with regard to optimality criteria (minimal 

time, minimal costs, minimal risk of loss of values, etc.). The solution W is 

a set of m vectors. Each vector is a sequence of serviced objects. Each 

object can be assigned to only one cluster. Thus all the n points are covered 

and all clusters are mutually exclusive. 

In this study we take the simplified version of task without constraints for 

the service time. We also considered two criteria of optimality: min distance 

and min time. 

 

Procedure for solution 

We employ a four step scheme for solving the above stated problem. 

 

Step 1: Clustering 

We use cluster analysis to partition the set P of n available points into ‘k’ 

subsets such that each subset is handled by one salesman (expert truck 

driver). These n points can be grouped together on the basis of existing 

similarities or dissimilarities amongst them. Some possible examples of the 

similarities relevant to our example are: 

 Physical proximity of the points in a cluster in terms of travel 

distance or travel time. 

 Nature of service provided (cash delivery, encashment, ATM 

servicing). 

We choose the only the first criteria for the clustering and obtain two 

independent sets of k clusters each. For this we use the standard k-means 

method. The method provides data separation into k mutually exclusive 

clusters, where k needs to be known beforehand. Then using an iterative 

scheme, the distances of all observations within a cluster are minimized 

from its centroid, ultimately terminating when the distances cannot be 

minimized further. The distance (time) to be minimized which we use is the 

road distance (road time) and not the Euclidean distance. Thus a good 

clustering will be one in which objects within a single cluster are as far as 

possible from another cluster and as close as possible within a cluster. We 

dwell on this postulate to find the optimal number of clusters later. 

 

Step 2: Choosing an optimal number of clusters 

An optimal number of cluster, m, will be one which, 

 Has the number of trucks vehicles not too large or too small. A 

large number of trucks imply a large expenditure on the 

maintenance and operation as well and a small number would 
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imply a larger time commitment from each driver and a 

corresponding waste of inventory. 

 Has most of the points from separate clusters to be ‘well separated’ 

and also being close to each other within a cluster.  

For the realization of this we use the silhouette metric which weighs the 

distances of each point within one cluster to points in the other clusters [16]. 

This was defined as, 

        S(i) =       (1) 

where a(i) is the average distance from the i
th

 point to the other points in its 

cluster,  and, b(i,k) is the average distance from the i
th

 point to points in 

another cluster k. 

Thus this value lies between +1 and -1;  with +1 indicating a perfectly well 

separated cluster with no points overlapping with other clusters and -1 

implying a totally imperfect cluster in which points which should have been 

in one cluster are wrongly assigned to another cluster. We solve the 

clustering stage for a set of increasing (and common sense) values of k. For 

each value we create these silhouettes and find the corresponding average 

values of the complete metric. The maximum of these average values is then 

chosen as the optimal number m. 

 

Step 3: Deciding the first point of each cluster 

This step is used for decision on the starting point from where the salesman 

(cash collecting vehicle) should begin his route. We touched upon this in 

Section 3. Our salesman starts from this point (home) and visits all the 

remaining ( 1)in  points [2,3... ]i m   in this particular cluster before 

returning to this first point again. Each cluster is independent of the other 

and handled by separate salesmen; thus theoretically the home could be 

chosen either, 1) randomly or, 2) such that the total travel path is minimized 

within each cluster for each salesman. However in our physical scenario we 

have one fixed point in S which is the ‘base’ camp. Physically this is the 

point where the entire money is collected/deposited. Thus we seek the 

salesman’s first point in each cluster to be the point closest to this base 

camp. 

For this we compare the road distances of each point of the m clusters to the 

base camp and choose the one with the minimum.  

 

Step 4: Routing within each cluster 
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The final step is the development of the optimal route to be taken by the 

salesmen within each of the m clusters beginning from an assigned first 

point. We considered two optimality criteria: 

 minimization of total road distance 

 minimization of total time spent on the road 

So now the problem is similar to solving the standard TSP with some of the 

abovementioned constraints separately in each of the clusters. Many 

algorithms exist for solving the TSP [18,19]. The emphasis in this study is 

not on the mathematical rigor but on achieving practical, swiftly 

computable yet close to the (global) optimum results; and results well-

improved from the mind-calculations of the experts. Two well-known 

methods were employed here: a) the nearest neighbor method and b) the 

cross entropy method. Finally the results of these were compared with the 

routes which would have been employed by the experts given a particular 

cluster. This was done by handing out maps to them (with the service points 

present in a particular cluster) and asking them to prepare the routing for 

this cluster. Finally the total distance was computed. 

 

The nearest neighbor method is an easy to conceptualize algorithm but may 

often give sub optimal results. Here from every point we choose the closest 

point which the salesman has not yet visited until all points are covered. 

However many paths may intersect amongst themselves and the final 

journey from the last point to the first point may be very large. As can be 

noted the total length of the journey depends on the first point. 

The cross entropy method is a more ‘efficient’ method for solving the TSP. 

It is based on an iterative scheme where random data is generated in the first 

step which is then ‘updated’ to produce better samples in the next step [21]. 
Here the TSP is formulated originally as a minimization problem, 
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where, S(x) is the total distance/ time of tour x X and X is the set of all 

possible tours, ,i jx xc
 - distance between the i

th
 and j

th
 node. 

Thus first we need to know how to generate random tours and next how to 

update for newer and better tours. The random paths are generated by 

developing Markov chains for n points with a given transition matrix 

(distance or time matrix A) and parameter updating is done by using 

Rubenstein’s updating formula. 

 

Results and Discussions 
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The source data contains 237 points in Perm (see Fig.1) including some of 

the shops and other retail providers, as well as Sberbank branches and 

ATMs. 

The time and distance matrices (237*237) were calculated based in GIS 

data. We solved the clustering stage for both of these choosing k values 

from 4 to 17. The silhouettes average values is shown on Fig.2. The 

maximum of silhouettes average was reached for k=14, which was selected 

as an optimal solution, m. 

 

 
Fig.2. The plot of the silhouettes average values for different k 

 

The shape of the silhouettes for optimal cluster partitioning is shown on 

Fig.3. 
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Fig.3. Complete silhouette for k=14 

 

The breadth of each cluster gives us an estimate of the number of points in 

it (the complete vertical axis thus corresponds to 237).The length for each 

point (within a cluster) is an indicator of the quality of clustering with 

values lying between +1 and -1. For instance it can be seen that in cluster 

number 2, 10 and 13 some points have negative silhouette values which are 

examples of bad clustering. The area of each cluster (composed of a number 

of points) is averaged, which is then averaged again to give the values 

provided in Fig.2. 

 

The routing was done using the nearest neighbor and the cross entropy 

methods. We also compared the results with the distances that would have 

been achieved by the experts. Some staff drivers of Prognoz company with 

large driving experience were asked to do routing on the map of Perm for a 

sample of the clusters. The route length comparison is provided on Fig.4. 

As expected the cross entropy method has shown better routing than the 

nearest neighbor method and expert solutions. 
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Fig. 4. Comparison of total route length for sample of the clusters 

 

 

Conclusions and desired developments 
The Cash Logistics Problem (CLP) could be considered as a special 

adaption of the standard Traveling Salesman Problem. The four step CLP 

solution algorithm which we have developed is applied and tested for the 

237 point set of the city of Perm and can be extended or applied to other 

cities as well.  

 

We gave a brief talk on our work at the Perm State University wherein 

several valuable suggestions and comments were given. We present some of 

them here for the inquisitive reader and hope to dwell on some of these for 

our further studies in this subject: 

 Deciding the optimal number of clusters instead of using the average 

value of the silhouettes should be used. In this view we are attempting 

to not incorporate clusters with a high average (made possible by some 

very good clusters present in it) which also contains one (or more) bad 

clusters. However in our study, as discussed above, we chose that 

optimal value which averages to the maximum, despite containing 

some bad clusters (if any). 

 Solving the complete problem, for each value of k, and then deciding 

on the optimal routing. However this would increase the running time 

of the problem enormously (especially for a larger city). 

 Classify the problem’s complexity before solving it to decide which 

algorithm to choose. 
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We are currently working on incorporating the more general aspects of the 

CLP into our model. As also described above we plan to include new 

optimality criteria for the time, risk, penalty costs etc. Penalties can also be 

added for a delay in the service from the constrained opening/closing hours. 

Another desirable aspect of the model which we seek to include in our 

further studies (as suggested during our brief talk) is the large degree of 

randomness due to the presence of human factors.  

 

Acknowledgements 

The authors would like to thank the invaluable suggestions of the attendees 

of their small talk at Perm State University on the 22
nd

 June 2011 for their 

comments and suggestions and Prof. Bela Myznikova for her advice 

regarding the solution. Bismark Singh would further like to thank Prognoz 

for the research grant provided.  

 

References 

 

1. Lawler E.L., Lenstra J.K., Rinnooy Kan A.H.G., Shmoys D.B. (eds.). 

The Traveling Salesman Problem. Wiley, New York.1985. 

2. Laporte G. The Vehicle Routing Problem: An overview of exact and 

approximate algorithms. 1992. 

3. Bertin J. Graphics and Graphic Information Processing. In SK Card, JD 

Mackinlay, B Shneiderman (eds.), \Readings in Information 

Visualization.1999. 

4. Lenstra J. K. and Rinnooy Kan A. H. G. (1975). Some Simple 

Applications of the Travelling Salesman Problem, Operational 

Research Quarterly (1970-1977).1975. Vol. 26, N. 4. Part 1. 

5. Laporte G., Palekar U. Some applications of the clustered travelling 

salesman problem. 2002. 

6. Dinga C., Cheng Y., Hea M. Two-Level Genetic Algorithm for 

Clustered Traveling Salesman Problem with Application in Large-Scale 

TSPs.2007. 

7. Babaev A.A. The formalization of the problem of the collector, Actual 

problems of economy and new technologies of teaching. Proceedings 

of the VIII International Scientific and Practical Conference.SPB.,2009. 

vol. 3.  

8. The implementation of a parallel algorithm for solving the problem of 

conveying goods with the use of clustering, available at 

http://escience.ifmo.ru/files/hpc2009/2-2-bolgova.pdf accessed 

September 6, 2011. Original in Russian. 



 165 

9. Fozia Hanif Khan, Nasiruddin Khan, Syed Inayatullah, Shaikh 

Tajuddin Nizami. Solving TSP problem by using genetic algorithm// 

International Journal of Basic & Applied Sciences IJBAS Vol. 9 N. 10. 

10. Suzdal V.A., Turukina E.A.. Innovative methods of planning express 

freight transport company// poster at VII International Conference 

"Infocommunication technologies of the global information society"  

original in Russian : Суздальцев В.А., Турукина Е.А., 

Инновационные методы планирования экспресс-доставки грузов 

транспортной  компанией.VRL:  

http://iktgio.mcrt.ru/rus/info.php?id=9921 

11. Introduction to Data Mining by Pang-Ning Tan , Michael Steinbach and 

Vipin Kumar,(Chapter 8)  

12. MacQueen J. Some methods for classification and analysis of 

multivariate observations.1967. 

13. Johnson S. C.: Hierarchical Clustering Schemes// 

Psychometrika.1967.Vol. 2.P.241 – 254 . 

14. Dunn  J. C. : A Fuzzy Relative of the ISODATA Process and Its Use in 

Detecting Compact Well-Separated Clusters// Journal of Cybernetics. 

1973.Vol.3.P.32 – 57 . 

15. Bezdek J. C.  Pattern Recognition with Fuzzy Objective Function 

Algorithms// Plenum Press. New York,1981. 

16. Rousseeuw P. J. Silhouettes: A graphical aid to the interpretation and 

validation of cluster analysis.1986. 

17. Kaufman L. and. Rousseeuw P. J. Finding Groups in Data: An 

Introduction to Cluster Analysis. Hoboken, NJ: John Wiley & Sons, 

Inc., 1990.  

18. Bektas, T. (2006) The multiple traveling salesman problem: an 

overview of formulations and solution procedures// Omega: The 

International Journal of Management Science.2006. Vol.34. (3).P. 209 -

219 . (doi:10.1016/j.omega.2004.10.004) 

19. Bezalel G. and Kizhanathan S.: An optimal solution method for large-

scale multiple traveling salesmen problems//Operations Research. 

1986.Vol.34(5).P. 698 – 718 . 

20. Gutin G., Yeo A. and Zverovich A., Traveling salesman should not be 

greedy: domination analysis of greedy-type heuristics for the TSP. 

Discrete Applied Mathematics. 2002.Vol.117.P.81 – 86 . 

21. De Boer P-T., Kroese D.P, Mannor S. and Rubinstein R.Y. A Tutorial 

on the Cross-Entropy Method// Annals of Operations 

Research.2005.Vol. 134 (1).P. 19 – 67 . 

 

http://iktgio.mcrt.ru/rus/info.php?id=9921

