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AHHoTanusi. B pabore Qopmupyorcs u uccienyroTcss pblHOUHblE rpadsl.  Cetw,
IpeJCTaBJICHHbIE TAKUMHU TpadaMu, JOCTATOYHO MOXOKU MO CTPOCHUIO HA COLMANIbHBIE CETHU WU
CETH COBMECTHOr0 LMTHpoBaHus. Kakas koMnaHus sBISETCS y3JI0M, U MOJIOKHUTENbHAs 3HAUNMast
KOppessiis MEXIy aKTHBaMU JBYX KOMIIAHMM yCTaHABIIMBAET CBSA3b MEXAy HUMH. Marpuia,
coJieprKaliasi CBSI3M MEXIy NapaMHM KOMIIAHWH, CO3JaHa JUIsl CETEBOIO aHaIM3a KOMIIAHUH, aKIUU
KOTOpBIX TOprytoTcss Ha QuHaHcoBbiX pbiHKax CIIIA. beuto mokaszaHo, 4TO pacmpenesneHue
cTerneHe n Kod(pPUIMEHT KiIacTepu3alMy Ui Halleil CeTH MOAYMHSIOTCS CTEIEeHHOMY 3aKOHY.
g moctpoeHus: rpadoB HCHOIB30BAINCH peajbHble PBIHOYHBIE JaHHbIE. AJTOPUTMBI IS
dbopmMHupoBaHHMS M aHaIM3a CETH MW JUId BU3yaJIM3allMM pE3YJbTaTOB pPEAIN30BaHbl C
HCIIOJIb30BaHUEM s3bIKka C++.

KiroueBble croBa: aHainu3 ceTel, ppIHOYHBIN Ipad, pacnpeaeseHue cTeneHel, MakCuMaabHas
KJIMKa

Abstract. In our research we form a network which is called a market graph. The network is
constructed quite similar to social networks or co-citation networks. Each company is a node and
the positive significant correlation between assets of the two companies establishes a link between
them. A matrix containing links between pairs of companies is created for network analysis of
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companies whose shares are traded on financial markets of the USA. It was shown that distribution
of degrees and clustering coefficient for our network follows the power law. Market data have been
employed to constructed graph, and C++ has been used for network analysis as well as network
visualization.

Keywords: network analysis, market graph, degree distribution, maximum clique

Introduction. One of the most important problems in modern finance is the
search for effective ways to generalize and visualize the stock market data. It can
provide researchers and practitioners with useful information about the behavior of
the market. Currently, a large number of shares are traded on the stock markets and
their number is steadily increasing. The huge amount of data is being generated by
the stock market every day. This data is usually visualized by thousands of charts
reflecting the price of each asset for a certain period of time. The analysis of such
data is becoming increasingly difficult as the number of shares increases.

One of the key aspects of modern economic systems is that they behave as
complex systems with a huge amount of interdependent parts and connections.
Analysis of the properties of the market network has attracted increasing attention in
the last decade. The concept of a market graph was considered in [1], in which the
market network is defined as a full weighted graph where the nodes represent the
assets and the weights of the arcs reflect the similarity between the behavior of assets.
In the article [1], the edge between two vertices is inserted into the market graph if
the corresponding value of the correlation coefficient is higher than the specified
threshold. In recent years, there has been an increased interest to applying and
developing an approach based on the market graph. These research papers include
empirical studies based on real market data and examine the various structural
properties and attributes of the market graph, such as maximum clicks, maximum
independent sets, the distribution of powers [2-5], clustering of the Pearson
correlation [6], the dynamics of the market graphs of the US market [7], the
complexity of the market graph [8]. The articles [3, 9-12] study the distinctive
features of individual financial markets. Market graphs with similarity measures that
differ from the correlation are studied in [9, 13-17].

Social network analysis (SNA) allows us to analyze the structure of relations in
an organization [18, 19]). The paper [20] considers SNA as a method of examining
relationships among social entities. The fundamental concepts of SNA are node and
link. A node is the unit (individual, object, item) and a link serves as the relationship
between nodes.

Data of financial market can be easily transformed into network data. A market
network is a set of companies, which have connections in pair to represent their
relationship. Two companies are considered in a relationship if there has been
positive significant correlation between their assets. In such type of network, a
company will be called as “node” or “vertex” and the connection will be an “edge”.
Market network will be represented by undirected unweighted graph. Market network
Is similar to social networks. Different type of social network analysis metrics can be
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used for finding edge density, degree distribution, maximum clique and maximum
independent set in the network.

This methodology allows you to visualize a set of data representing its elements
in the form of vertices and observe certain relationships between them. The study of
the structure of the graph representing the data set is important for understanding the
internal properties of the market that it represents, as well as for improving the
organization of storage and retrieval of information.

In our research we would like to find the type of the degree distribution, the type
of the clustering-degree distribution exhibited by the market network. Moreover, we
would like to estimate the size of the maximum clique in the market graph.

Note that the last two decades have seen extensive research in the area of degree
distribution analysis of complex networks arisen in sociology, physics, and biology.
It has been shown that many networks have similar degree distributions [21-26]. It
turned out that most of real networks have degree distributions that are scale-free
[21]. In other words, their degree distributions are power-law.

The main purpose of this paper is to identify the dynamics of changes in the
structural properties of the market graph over time. The paper deals with graphs
based on stock prices data for different periods of time during 2013-2017 to study the
evolution of some characteristics of these graphs.

1. Data

The database for constructing and analyzing the market graph was taken from
the resource [27]. The daily data were collected from Thomson Reuters database,
which was used to retrieve historical prices of the companies traded in the NYSE and
NASDAQ for the period from November 22, 2013 to November 10, 2017 (i.e. 1000
trading days). The daily closing prices have been adjusted for dividends and splits.
Our analysis includes only stocks only stocks that had been traded without gaps and
omissions during this period (3736 different stocks remained, and only 15 stocks
from S&P500 except 15 were eliminated).

To study the dynamics of the market graph, the 1000-day trading days interval
was divided into 10 consecutive 500-day periods. Each period except the first is
obtained by shifting the previous one by 50 days. Thus, two neighboring periods have
450 common days. The dates corresponding to each period are presented in Table 1.

Time periods Table 1
Period Start End
1 22.11.2013 13.11.2015
2 04.02.2014 26.01.2016
3 17.04.2014 07.04.2016
4 30.06.2014 20.06.2016
5 10.09.2014 31.08.2016
6 21.11.2014 11.11.2016
7 03.02.2015 24.01.2017
8 16.04.2015 06.04.2017
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9 29.06.2015 19.06.2017
10 09.09.2015  30.08.2017
11 20.11.2015  10.11.2017

Market network is formed based on correlation; it means that a company has
connection with those companies which have the positive significant correlation of
assets with it in this period of time.

The formal procedure for constructing the market graph is as follows. We denote
by P(t) the price of the asset i in day t. Then

P (t
L (1)
R(t-1)
Is the logarithm of the ratio of the price of the asset i in day t to the price in the
previous day t —1. Let
C; =PCC(R(1),R(2).....R (k),R;(1).R;(2).....R; (k)), 2)

where PCC is the Pearson correlation coefficient.

The edge between the vertices i and j is added to the graph if C; >&, which

means that the prices for these two assets behave identically over time, and the degree
of this similarity is determined by the corresponding value of the Pearson correlation
coefficient.

Ri(t)=1In

2. Network Analysis
2.1. Edge Density
The edge density of a simple undirected graph G is defined as the ratio of the
number of edges of a graph to the maximum possible number of edges in it [28]:
2|E|
D=——""—, 3)
VI(VI-2)

where V is the number of vertices of the graph and E is the number of edges of a
graph.

The edge density is an important characteristic of the market graph. The increase
in the edge density indicates a certain “globalization” of the stock market, i.e. that
more and more assets significantly affect each other and the change in prices of one
asset entails a change in the prices of other stock assets.

2.2. Degree Distribution
The graph G =(V,E) is connected if there is a path from any vertex to any
vertex in the set V . If the graph is disconnected, it can be decomposed into several

connected subgraphs, which are referred to as the connected components of G.
The degree of a vertex is the number of edges emanating from it. For every

integer number k one can calculate the number of vertices n(k) with the degree equal
to k, and then get the probability that a vertex has the degree k as P(k)=n(k)/n,
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where n is the total number of vertices. The function P(k) is referred to as the

degree distribution of the graph. The degree distribution is an important characteristic
of a graph representing a dataset.

It should be noted that real graphs that arise in different fields (economics,
Internet, telecommunications, finance, medicine, biology, sociology) exhibit the
degree distribution that follows the power-law model [21-26]. According to this
model, the probability that a vertex has degree k (that is, there exist k edges
originating from it) asymptotically follows

P(k)ock™ or logP(k)oc—ylogk,
which shows that this function has a linear dependence in the logarithmic scale.
An important characteristic of this model is its scale-free property. It implies that

the fractal structure of a network remains constant despite its development and
growth over time [29].

2.3. Clustering Analysis

The local clustering coefficient for node i is defined by
Ei
"k (ki -1)’

where E; is the number of links connecting the immediate neighbors of node i, and
ki is the degree of node i. The average value of clustering coefficients of all nodes in

a network is called the average clustering coefficient. The value of the average
clustering coefficient quantifies the strength of connectivity within the network. The
paper [30] examines protein-protein interaction networks and metabolic networks,
which have to demonstrate large average clustering coefficients. The analogues result
has been established for collaboration networks in academia and the entertainment
industry in papers [31, 32]. Let C(k) denote the average clustering coefficient of

nodes with degree k. It has been found that for most of real networks C(k) follows
B
C(k)~ B
where the exponent £ usually lies between 1 and 2 [33-35].

2.4. Maximum Cliques
Given a subset S <V, by G(S) we denote the subgraph induced by S. A subset

CcV is aclique if G(C) is a complete graph, i.e. it has all possible edges. The

maximum clique problem is to find the largest clique in a graph.

The clique is a set of vertices, which are fully interconnected. That is why any
financial asset, which belongs to the click, is strongly correlated with all other
financial assets in this click. Because of this fact, the asset is bound to a specific click
only in case when its behavior is similar to all other assets in this group. It is clear
that one of the main characteristics of stock market is the maximum size of clique,
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because it shows the largest possible group of similar objects (financial assets, which
are cross correlated to each other).

The maximum clique problem (as well as the maximum independent set
problem) is known to be NP-hard [36]. Moreover, it turns out that these problems are
difficult to approximate [37, 38]. This makes these problems especially challenging
in large graphs. However, as we will see later, a special structure of the co-mention
graph allows us to get the exact solution of the maximum clique problem.

The variant of Bron — Kerbosch algorithm is used in order to calculate an
accurate maximum click. Bron — Kerbosch algorithm is the algorithm which allows to
find maximal cliques in the undirected graph [39]. Dutch scientists Bron Conradomi
and Jupe Kerbosh developed this algorithm and published it in 1973. There some
other algorithm, which can solve the problem of maximum clique and works better in
some graphs with a little quantity of vertexes. Actually, Bron — Kerbosch algorithm
and its improvements work effectively.

The main form of Bron — Kerbosch algorithm is recursive search algorithm with
return. It founds all maximum cliques in the graph G. The algorithm is linear relative
to the number of cliques in the graph. The working time of this algorithm with some

extra tests O(n”’3 ) But the algorithm is more effective for random graphs.

3. Evolution of Market Network

The density of distribution of correlation coefficients for the US stock market is
almost symmetrical and has a form which is similar to the normal with the mean
around 0.2 (Fig. 1, 2). The comparison of densities for different periods of time
shows that distributions are similar to each other. The proportion of present edges to
all possible edges in the network are shown in Table 2. The density of edges
increases over the time, its peak is reached during 5 and 6 periods and after that it
goes down. (Table 2). A positive mean implies that financial assets of the USA
market are related to each other on average. The correlation in case of negative mean
Is rather rare. Because of that, it is more difficult to form a diversified portfolio of
shares whose yields move in different directions. The hypothesis on power-low
degree distribution of vertexes’ degree is confirmed. It means that degree distribution
of vertexes is approximated by a power-law model. At the same time the power
coefficient y is less than 1 for all periods of time. For the given networks, the
clustering-degree distribution relation also follows the power law (Fig. 3). The
resulting models is statistically significant at any significance level. Herewith, the
exponent S turns out less 1 for all the subgraphs under consideration (Table 2). The

plot of the clustering-degree relation, i.e. C(k) as a function of node degree k, is
shown in Fig. 4.
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Fig. 1. Distribution of correlation coefficients (1st period)
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Fig. 2. Distribution of correlation coefficients (11th period)

Characteristics of graphs Table 2
Period 1 2 3 4 5 6 7 8 9 10 11
Density 0.014 0.018 0.019 0.02 0.023 0.023 0.02 0.02 0.019 0.014 0.012

Coefficient 086 084 082 082 0.79 081 084 084 085 092 0.82
Coefficient # 025 0.25 024 024 022 023 023 023 023 023 022
Clique size 116 127 139 147 166 159 149 149 149 141 137
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Fig. 3. The degree distribution of the market network
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Fig. 4. The clustering-degree relation of the market network

The sizes of the maximum cliques of the market of the USA big enough
(Table 2), and the peak is account form September 2014 till August 2016. A clique is
a set of fully interconnected vertices. That is why any asset owned by the clique is
strongly associated with all other assets in this clique. In this way, an increase of the
maximum clique may mean an intensity increase of markets’ globalization in this
period of time.

Conclusion. In this paper we transform financial data into the market graph. The
examination of graph properties gives new understanding of the financial internal
structure. We investigated the dynamics and changes of the market graph structural
properties over time. As a result, we came to several interesting conclusions based on
our research. It was shown that the power-law structure of the market graph is fairly
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stable. Unlike real social graphs, the market graph displays power-low distribution of
degrees with non-typical indicators of degree exponent. Therefore it can be outlined
that the concept of ‘self-organized network’ may be employed for the market graph,
and the financial market can be viewed as a ‘self-organized’ system. The sizes of the
maximum cligues on the market of the USA are big enough and the peak is account
from September 2014 till August 2016.

This work was supported by the Russian Fund for Basic Research, project 18-37-
00060.
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