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AHHoTanus. B paboTe npoBOaUTCS CUMBOJBHOE U UYHCIEHHOE MCCIEAOBAHHUE PA3HOCTHBIX
cxeM Ui ypaBHeHus KoprtBera ne Bpusa ¢ ucnonb3oBaHueM mepBoro auddepeHaIbHOro
npubmokenus (FDA). OcHOBHOE BHUMaHHE Y/I€JI€HO KaYECTBEHHOMY aHAJIM3Y Pa3HOCTHBIX CXEM,
aHanornuHelx cxeme Kpanka—HukoscoHna, u ornieHke ux HeBsi3ku. [IpenoxkeHbl KpuTepun BbIOOpa
IIIaroB 10 BPEMEHHU U TIPOCTPAHCTBY ISl YACICHHBIX PacYeTOB, YTO TO3BOJISIET YIYUYIIUTh TOYHOCTD
1 3¢ HEKTUBHOCTH BBIYUCICHUH.

PaccmarpuBaroTcss OJIHO- M JBYX-COJIMTOHHBIE pemeHns ypaBHeHus KJ/IB, a Ttakxke
HCCIIEYIOTCS IB€ PA3HOCTHBIE CXEMbI BTOPOI'O M YETBEPTOrO MopsAaka ToyHOCTH. [lokazaHo, 4To
BBIOOp JIOMYCTHMOTO YIOpSAOYEeHUsT Tpu Tnoctpoernn FDA Biusier Ha 00beM BBIUMCICHUH H
KOMITAKTHOCTb pe3yibTara.

[TpenioskeH WHTETPATHHBIN METO/ OLIEHKH IOTPEITHOCTH Pa3HOCTHBIX CXEM, OCHOBAaHHBIN Ha
BbuucieHn FDA, uTo mMO3BONSET OIEHUTh TJI00ATbHYI0 MOTPEHIHOCTh IPH IPOBEACHUS
BBIYUCITUTENILHBIX AKCIEPUMEHTOB. Pe3yiabTaThl MOATBEPKIEHBI UYUCICHHBIMH pacdeTaM¥ ISt
OJTHO- U JIByX-COJINTOHHBIX PEIICHHUH, TEMOHCTPUPYIOIIMMHI XOpOIlIee KaueCTBEHHOE COBIAJICHUE
r100aTbHOM OIMMOKH C OIMOKOM, BRIYUCISHHON ¢ ToMombio FDA.

Pesynbrathl paboThl MOTYT OBITH MOJE3HBI JUIS TMOBBIIEHUS TOYHOCTH M 3(PPEKTUBHOCTH
YHUCIEHHBIX METO/I0B PEIIECHUS HETMHENHBIX YPAaBHEHHUH B YACTHBIX TPOU3BOIHBIX.

KiroueBble ¢JjioBa: pa3HOCTHBIE CXeMbl, MepBoe auddepeHImanibHoe MPUOTHKCHHE,
ypaBHenus Kotpesera ne Bpusa, komnbroTepHas anredpa, 6asuce [ pédnepa.

Abstract. The paper presents a symbolic and numerical investigation of finite difference



http://mathmod.esrae.ru/
http://mathmod.esrae.ru/48-197
mailto:blinkovua@info.sgu.ru
mailto:blinkovua@info.sgu.ru

Mamemamuueckoe modenuposanue, KOMRbIOMEPHBLIL U HAMYPHBLI 2024 Ned

IKcnepumenm 6 ecmecmeennnlx Haykax http://mathmod.esrae.ru/ ISSN 2541-9269

schemes for the Korteweg-de Vries (KdV) equation using the first differential approximation
(FDA). The main focus is on the qualitative analysis of finite difference schemes similar to the
Crank—Nicolson scheme and the evaluation of their residual errors. Criteria for selecting time and
space steps for numerical calculations are proposed, which improve the accuracy and efficiency of
computations.

The method of differential approximations, introduced by N. N. Yanenko and Yu. I. Shokin, is
used to analyze the properties of finite difference schemes through the approximation of the original
differential equations. The paper considers one- and two-soliton solutions of the KdV equation and
investigates two finite difference schemes of second and fourth-order accuracy. It is shown that the
choice of ordering in the construction of the FDA affects the volume of computations and the
compactness of the result.

An integral method for estimating the error of finite difference schemes based on the
computation of the FDA is proposed, which allows for the evaluation of the global error without
conducting computational experiments. The results are confirmed by numerical calculations for
one- and two-soliton solutions, demonstrating good qualitative agreement between the global error
and the error computed using the FDA.

The results of this work can be useful for improving the accuracy and efficiency of numerical
methods for solving nonlinear partial differential equations.

Keywords difference schemes, first-order differential approximation, Korteweg-de Vries
equations, computer algebra, Grobner bases.

The paper presents a symbolic and numerical investigation of finite difference
schemes for the Korteweg-de Vries (KdV) equation using the first differential
approximation (FDA). The main focus is on the qualitative analysis of finite
difference schemes similar to the Crank—Nicolson scheme and the evaluation of their
residual errors. Criteria for selecting time and space steps for numerical calculations
are proposed, which improve the accuracy and efficiency of computations.

The method of differential approximations, introduced by N. N. Yanenko and
Yu. I. Shokin, is used to analyze the properties of finite difference schemes through
the approximation of the original differential equations. The paper considers one- and
two-soliton solutions of the KdV equation and investigates two finite difference
schemes of second and fourth-order accuracy. It is shown that the choice of ordering
in the construction of the FDA affects the volume of computations and the
compactness of the result.

An integral method for estimating the error of finite difference schemes based
on the computation of the FDA is proposed, which allows for the evaluation of the
global error without conducting computational experiments. The results are
confirmed by numerical calculations for one- and two-soliton solutions,
demonstrating good qualitative agreement between the global error and the error
computed using the FDA.

The results of this work can be useful for improving the accuracy and
efficiency of numerical methods for solving nonlinear partial differential equations.

Introduction
In the article [1], a qualitative study of finite difference schemes of the Crank—
Nicolson type for the Korteweg-de Vries (KdV) equation is conducted using the first
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differential approximation (FDA). The main goal of the work is to evaluate the
residual error of the method and propose criteria for selecting time and space steps
for numerical calculations.

The method of differential approximations, proposed by N. N. Yanenko and
Yu. I. Shokin [2, 3, 4], allows for the investigation of the properties of finite
difference schemes through the analysis of differential equations approximating the
original problem.

Currently, for partial differential equations of evolutionary type, and in
particular for the KdV equation, the use of computer algebra systems has been
considered in [5], and for the Navier—Stokes equations in [6].

In [7], the FDA for finite difference schemes describing ordinary differential
equations is considered. The connection between the singular perturbation of the
original system and the concept of FDA is discussed. The issues of computing FDA
in computer algebra systems, Sage and SymPy, are also considered.

In [1], the propagation of waves in nonlinear media is considered for the KdV
equation, along with its one- and two-soliton solutions. Two finite difference schemes
of second and fourth-order accuracy, similar to the Crank—Nicolson scheme for the
heat equation, are investigated. The construction of the FDA is performed using
computer algebra systems (SymPy), which allows for the verification of the
consistency of the finite difference schemes and the original differential equations. It
iIs shown that the choice of ordering in the construction of the FDA affects the
volume of computations and the compactness of the result. Numerical calculations
for one- and two-soliton solutions confirm the theoretical conclusions. It is shown
that as the parameter Kk increases, it is necessary to reduce the time and space steps.

The application of the FDA allows for both qualitative and quantitative
investigation of finite difference schemes, and the choice of ordering reduces the
volume of computations. The results are confirmed by numerical experiments for
soliton solutions of the KdV equation.

The main idea of this method is to replace the study of the properties of a finite
difference scheme with the study of a problem involving differential equations that
occupy an intermediate position between the original differential problem and the
approximating finite difference scheme.

In this work, using the results of [1], an integral method for estimating the error
of finite difference schemes is proposed. This allows for the use of the local error
provided by the computation of the FDA to obtain an estimate of the global error of
the finite difference scheme.

1. First Differential Approximation

The Korteweg-de Vries equation [8] is one of the main tools in the theory of
nonlinear waves and is used to model various physical phenomena, such as the
propagation of sound waves, surface water waves, and plasma waves.
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u, +6uu, +u,, =0 (1)
One- and two-soliton solutions of the Korteweg-de Vries equation are solutions
that describe the propagation of waves in nonlinear media. The one-soliton solution
(2) represents a traveling wave & =Kk(x—4k’t), depending on the parameter k,
which propagates without changing its shape and amplitude [9]:

2k?

" cosh®& )

The two-soliton solution (3) describes the interaction of two waves
& =k (x—4k2t) and & =k, (x—4k’t), depending on the parameters k, and k,, in
which they retain their shape and amplitude during further motion [9, p. 294]:

(Bk? —8k2 ) k2 cosh?&, +kZ sinh?&,)
" (kK )eosh( + &)+ (k, + k,)eosh(z, ~&,)F

(3)

In this work, two schemes similar to the Crank—Nicolson scheme [10] for the
heat equation will be investigated. The following second-order scheme in h is
considered in [5]:

Ur-Hl—un 3 n+1 n+1 n n
J—-i-ﬁ U21+1—U21-1 U2j+1—U2j—1 +
T

e —2upt e 2up-uy )
+(ur.‘ —2uf™ +2u, u.”_z)):o.

j+2 ]

(4)

The finite difference scheme (4) has an order of O(z%,h?) . We also consider a
higher-order scheme O(z?,h*):

u r_1+1 - ur_1 3 n+1 n+1 n+1 n+1
J L U%jr2 —8uji +8u”ja —U?j J+
T 24h
n n n n
+(u2,-+z—8u2,-+1+8u2,-_1—u2,-_z))+
5)

1 n+1 n+1 n+1 n+1 n+1 n+1
BT (( i3 —8U; 5 +13uy —13u;T +8u; uj_3)+

( i3 —8uj,, +13uj, —13u}, +8uj, —u;‘%)): 0
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The construction of the first differential approximation (FDA) is based on
algebraic operations and can be effectively implemented using computer algebra
systems [12, 13, 14]. If the finite difference scheme is inconsistent or has a smaller
solution space compared to the original system of differential equations, then extra
equations will be obtained during the construction of the FDA, which allows for
stopping the computations. This check is simpler and requires fewer resources than
checking consistency in the finite difference case.

The paper proposes the use of the Grobner basis algorithm [15, 16] to verify
the consistency of the original system of differential equations and the approximating
finite difference scheme, both directly and through the FDA. Although the Grébner
algorithm is built into most computer algebra systems, it has limitations when
working with differential equations, finite difference schemes, and formally infinite
Taylor series required for the FDA.

The author's program is implemented in the SymPy system
(https://www.sympy.org) and IS available for download at
https://github.com/blinkovua/sharing-blinkov/blob/master/KDV. Algorithmically, the
construction of the FDA using Grobner bases can be represented as working with an
infinite module, where ordering is first performed by dependent variables and then by
independent variables POT (position over term — ordering first by dependent
variables and then by independent variables). In this case, the computations are
performed up to the first non-zero terms of the series in time steps 7 and space steps
h.

The FDA for the finite difference scheme (4) in the degrevlex ordering takes
the following form:

6uu, +u, +u, +h*@Bu’u, + WU, _ Uy, _ 3U,Y, )+
2 2
(6)
+rz(—u—m)+...= 0.
12
For further use, we introduce the following notation:
FDA = h2(3u?u, + Y% U~ 3Uullyy
2 4 2
(7)

20_ Yy -
+28(- %) =FDA , +FDA ,.

For the scheme (5) in the same ordering:
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27u®u. 9u®u, uu. 8luu.u
6uu, +U, +u_ +h*( X gt e

10 2 5
3 (8)
_Tu, 29,0,  37uu, _9ux)+12(_u_m)+m: 0.
120 20 20 2 12
Similarly, we introduce the following notation:
3 2
FDA = h4(27u Uy uu, uu, 8luugu, Tug,
10 2 5 120
(9)

_ 29u,u,  37uu,
20 20

ou’ u
~)+ T (1) =FDA  +FDA .

Checking the FDA on exact solutions allows for the evaluation of the accuracy
of the numerical scheme without programming and conducting computational
experiments [1]. Substituting the exact solution into the FDA shows that the residual
error of the scheme depends on the grid steps h and 7, as well as on the parameter
k.

Substituting the exact solution (2) into the FDA (4) yields the following form
of the FDA:

h?(8k” (tanh & —1)(tanh & +1)x
x (15tanh* & —16 tanh® & +3)tanh &)+ 72(— 256k (tanh & —1)x (10)
x(tanh & +1)(3tanh & —2)tanh &3)+...= 0

Substituting the exact solution (2) into the FDA (5), the term with z° coincides
with the corresponding term in (10), while the term with h* takes the following form:

—32k°(tanh & —1)(tanh & +1)(945tanh® & —1800tanh* & +

+1014tanh2& —152)tanh &15 (11)

The analysis of the residual error for the one-soliton solution (2) for formulas
(10) and (11) showed [1] that for 0 <k <1, the error depends more on the step h,
while for k >1, it depends more on the step 7 . For the scheme (4), the residual error

is of the form O(z’k™,h’k"), while for the scheme (5), it is of the form
O(r°k™, h*k?).
Substituting the two-soliton solution (3) into the FDA leads to complex

symbolic expressions, making analysis difficult. It can be assumed that the
constraints obtained for the one-soliton solution remain valid for the two-soliton case.
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Thus, the FDA allows for the effective evaluation of the accuracy of numerical
schemes based on exact solutions, even for complex nonlinear problems.

2. Accumulation Function for Estimating Global Error

The error accumulates at each time step since the finite difference scheme
approximates the original system of differential equations with an accuracy up to the
FDA. Thus, the FDA defines the local error. To estimate the global error, the
following accumulation function can be proposed, which characterizes the growth of
the error over time steps:

1

acc, =acc, +—[1+ (12)

: —”FDA“”)”](ti—tu).

IFDAC,)|

In formula (12), the additional term represents the numerical value of the
integral using the trapezoidal method, normalized by the value ||[FDACt,)| :

~(FoA®)I+IFDAG It —t,)

Using the values from formula (12), we can write the function for the upper
estimate of the global error at the i-th step as:

error, (x,t;) = acc, FDA(X,t,) (13)

The program for numerical experiments is implemented in the open-source
packages SciPy (https://scipy.org) and Matplotlib (https://matplotlib.org/) and can be
downloaded at https://github.com/blinkovua/sharing-blinkov/blob/master/KDV.

When performing calculations using both finite difference schemes (4) and (5),
the boundary conditions U, =0 were set. Since the schemes are nonlinear with

respect to the next time layer, the system of nonlinear equations was solved using the
simple iteration method. The number of iterations until the difference in iterations
reached the Frobenius norm of 107 did not exceed 3.

Figures 1 and 2 show the calculations for the exact solution (2) with k =0.2,
h=0.25, and 7=1.0h using both finite difference schemes (4) and (5). The

notations FDA, FDA __ ,, FDA , for the finite difference scheme (4) and FDA ,
exactly correspond to the notations (7) and (9).

These were computed numerically using formulas (10) and (11), respectively.
The additional label "numeric" indicates calculations using formulas (6) and (8),

applying numerical differentiation formulas using 5 time layers to compute Uy, .
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Fig. 1
The notations "error" indicate the relative error. Let U denote the numerical

solution and U denote the exact solution, then:

|G(X’ti)_u(xlti)|

error(x,t) =
1+ u(x,t) |
|acc, FDA(x,t,) | (1)
error,, (x,t;) = '
1+ u(x,t) |

The analysis of numerical experiments in Figures 1 and 2 shows that numerical
differentiation yields results that agree well with symbolic computations on the exact
solution. When the time and space steps are significantly reduced, small oscillations
may occur, which is explained by the number of digits for floating-point operations
and rounding errors. Since numerical differentiation operations are defined through
the difference of close values, the error in floating-point computations is greatest in
these cases.
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Figures 3a and 3b show the calculations for the exact solution (3) with k; = 0.5
, k, =0.2, h=0.25, and 7 =1.0h using both finite difference schemes (4) and (5).
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The notations in Figures 3a and 3b repeat those in Figures 1 and 2.

The results presented in Figures 3a, 3b, 1, and 2 allow us to conclude that there
Is good qualitative agreement between the global error and the error computed using
the FDA and the accumulation function (12). Moreover, the error computed using the
FDA and the accumulation function (12) provides an upper bound for the global
error. This allows the FDA to be used for the effective selection of time and space
steps depending on the problem parameters, as well as for the effective control of

computational accuracy.

The results presented in Figures 4a and 4b for the exact solution (2) with
k=0.2, h=0.25, and various ratios of 7 and h using both finite difference
schemes (4) and (5) demonstrate good qualitative behavior. In Figure 4b for scheme
(5), with a small ratio of 7 and h, a sharp increase in computational accuracy is

observed for sufficiently large h. This is related to the high order h* of the finite

difference scheme (5).

125

150
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"Calculation time" denotes the computation time and allows us to conclude the
optimality of computations for the chosen k with 1<7Zh<2, both in terms of
computation volume and required accuracy.

The results presented in Figures 5a and 5b for the exact solution (3) with
k, =05, k,=0.2, h=0.25, and various ratios of 7 and h using both finite
difference schemes (4) and (5) demonstrate behavior similar to that in Figures 4a and
4b.

"Calculation time" allows us to conclude the optimality of computations for the
chosen k with 1.2<7h<1, both in terms of computation volume and required

accuracy. This is related to the larger value of k; =0.5 compared to k=0.2 and
fully corresponds to the conclusions drawn in [1] based on formulas (10) and (11).

Conclusion

The application of the first differential approximation allows for qualitative
and, in some cases, quantitative investigation of finite difference schemes. By
choosing the ordering in the construction of the first differential approximation, it is
possible to significantly reduce the volume of symbolic computations and obtain a
more compact form containing derivatives of much lower order. Using the example
of Crank—Nicolson-type finite difference schemes for the Korteweg-de Vries
equation, it was possible not only to conduct an analytical investigation of the
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applicability of soliton solutions depending on the parameters but also to use the

compact form for numerical computations.
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The analysis of numerical experiments shows that numerical differentiation
yields results that agree well with symbolic computations on the exact solution. When
the time and space steps are significantly reduced, small oscillations may occur,
which is explained by the number of digits for floating-point operations and rounding
errors. Since numerical differentiation operations are defined through the difference
of close values, the error in floating-point computations is greatest in these cases.

The results allow us to conclude that there is good qualitative agreement
between the global error and the error computed using the FDA and the accumulation
function. Moreover, the error computed using the FDA and the accumulation function
provides an upper bound for the global error. This allows the FDA to be used for the
effective selection of time and space steps depending on the problem parameters, as
well as for the effective control of computational accuracy.
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The results are confirmed by numerical calculations for one- and two-soliton
solutions.
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