ВИХРЕВАЯ МАГНИТНАЯ СТРУКТУРА СФЕРИЧЕСКИХ НАНОЧАСТИЦ ЖЕЛЕЗА

Р.А. Михайлюк¹⁾, И.Л. Дорошевич²⁾

1) студент Белорусского государственного университета информатики и радиоэлектроники», г. Минск, Беларусь, <u>rodion3000123@mail.ru</u>

2) к.ф.-м.н., доцент Белорусского государственного университета информатики и радиоэлектроники», г. Минск, Беларусь, dorochevich@bsuir.by

Аннотация: в статье представлены результаты расчета магнитной структуры наночастиц железа сферической формы, который проводился с помощью программного пакета микромагнитного моделирования Nmag.

Ключевые слова: наночастица, микромагнитное моделирование, магнитная структура.

VORTEX MAGNETIC STRUCTURE OF SPHERICAL IRON NANOPARTICLES

Rodion A. Mihaylyuk¹⁾, Irina L. Doroshevich²⁾

1) the student Belarusian State University of Informatics and Radioelectronics, Minsk, Belarus, <u>rodion3000123@mail.ru</u>

2) Ph. D., associate Professor, Belarusian State University of Informatics and Radioelectronics, Minsk, Belarus, <u>dorochevich@bsuir.by</u>

Abstract: the article presents the results of calculating the magnetic structure of spherical iron nanoparticles, which was carried out using the Nmag software package for micromagnetic modeling.

Key words: nanoparticles, micromagnetic modeling, magnetic structure.

Исследование магнитной структуры ферромагнитных наноразмерных частиц представляется в настоящее время исключительно важным, поскольку принцип действия приборов устройств на их основе в большинстве случаев базируется на тонкой перестройке распределения намагниченности в них под воздействием внешнего магнитного поля.

Нахождение пространственного распределения намагниченности в сферической наночастице железа проводилось путем минимизации свободной энергии Гиббса, которое осуществлялось интегрированием уравнения Ландау – Лифшица – Гильберта [1, 2] с помощью пакета микромагнитного моделирования Nmag [3]. Внешнее магнитное поле прикладывалось вдоль оси Ox легкого намагничивания частицы, а проекция его напряженности ((H_{ext})_x) на Ox изменялась от 500 до –500 кА/м и обратно с шагом 50 кА/м. Данные результатов моделирования извлекались в текстовые файлы *plot.dat*, _*dat.ndt* и *.*vtk* файлы. Визуализация векторных полей проводилась просмотром данных *.*vtk* файлов в программе MayaVi.

Ранее сообщалось [4], что наночастицы с радиусами 5÷12 нм имеют однородную магнитную структуру, а изменение направления намагниченности в переключающем поле на противоположное осуществляется когерентным поворотом. Для наночастиц с $R = 13\div30$ нм с уменьшением напряженности внешнего магнитного поля наблюдается скачкообразный переход от однородной намагниченности к вихревой магнитной структуре (рисунок 1).

а – трехмерное изображение; б – вид в направлении оси вихря

Рисунок 1. Магнитная структура сферических ферромагнитных наночастиц железа радиусами 12 нм, 13 нм и 20 нм при $H_{ext} = 0$

Для детального описания вихревой структуры, наблюдаемой в наночастицах железа с $R \ge 13$ нм, использовались следующие параметры: единичный вектор \vec{v} , направленный вдоль оси вихря (направление поляризации вихря); угол α между направлениями вектора намагниченности \vec{M} и вектора \vec{v} ; угол β между направлением \vec{v} и легкой осью намагничивания (*Ox*).

На рисунке 2 представлена диаграмма $(R, (H_{ext})_x)$ состояний магнитной структуры сферических наночастиц железа.

Рисунок 2. Диаграмма состояний магнитной структуры сферической наночастицы железа

Зарождение вихря начинается после уменьшения внешнего магнитного поля до некоторого критического значения напряженности H_{nucl} , известного как поле нуклеации [5]. Дальнейшее постепенное снижение внешнего поля до нуля приводит к развитию вихревой магнитной структуры, которое выражается в увеличении углов α и β , что приводит к уменьшению *x*-компоненты приведенной остаточной намагниченности. С возрастанием модуля напряженности внешнего поля, приложенного в противоположном направлении, от нуля до H_{ann} изменение магнитной структуры частицы происходит в обратном порядке. Величина H_{ann} , при которой магнитная структура снова становится однородной в направлении против Ox, называется полем аннигиляции [5]. Значения H_{nucl} и H_{ann} в зависимости от радиуса частиц приведены в таблице. Видно, что с увеличением размера частиц значения H_{nucl} и H_{ann} возрастают, при этом для всех радиусов (кроме 13 нм) поле нуклеации меньше поля аннигиляции $H_{nucl} < H_{ann}$.

При зарождении вихря его ось \vec{v} сонаправлена с осью легкого намагничивания ($\beta = 0$) и данное направление сохраняется до определенного значения напряженности внешнего поля, зависящего от размера частицы: 50 кА/м для $R = 15 \div 19$ нм, 100 кА/м для $R = 20 \div 25$ нм и 150 кА/м для R = 30 нм. Для частиц с радиусами 13 нм и 14 нм ось вихря не изменяет своего первоначального направления вдоль *Ox*. При $H_{ext} = 0$ ось вихря (\vec{v}_0) максимально отклонена от оси легкого намагничивания. Значения координат вектора \vec{v}_0 и связь его направления с направлением закручивания намагниченности для частиц различных радиусов приведены в таблице, откуда следует, что у частиц с радиусами $R \ge 16$ нм при выключении магнитного поля ось вихря перпендикулярна оси легкого намагничивания ($\beta \approx 90^{\circ}$), т. е. формируется поперечный вихрь.

Таблица 1. Характеристики вихревой магнитной структуры ферромагнитных наночастиц железа сферической формы: H_{nucl} – значение поля нуклеации; H_{ann} – значение поля аннигиляции вихря; v_{0x} , v_{0y} , v_{0z} – координаты единичного вектора \vec{v}_0 вдоль оси вихря при $H_{ext} = 0$; α_{0max} – угол между вектором \vec{v}_0 и вектором намагниченности \vec{M} поверхностных точек средней плоскости, перпендикулярной оси вихря, при $H_{ext} = 0$

R	н.	Н				Связь направлений	
л, 11М	$II_{nucl},$	$II_{ann},$	v_{0x}	v_{0y}	v_{0z}	закручивания намагни-	$\alpha_{0 \max}, ^{\circ}$
нм	KA/M	KA/M				ченности и вектора $ec{\mathbf{v}}_0$	
13	50	50	1,00	0,00	0,00	левый винт	30
14	50	100	1,00	0,00	0,00	правый винт	53
15	150	150	0,99	0,12	-0,03	левый винт	63
16	150	200	0,04	0,86	-0,51	левый винт	72
17	150	250	-0,06	0,87	0,50	правый винт	77
18	150	300	0,05	0,64	-0,76	правый винт	82
19	200	300	0,00	0,85	-0,53	левый винт	87
20	200	350	-0,07	-0,74	0,66	правый винт	89
21	200	350	0,03	-0,81	0,59	левый винт	90
22	200	350	0,00	-0,71	0,71	левый винт	91
23	200	400	0,00	0,81	-0,58	левый винт	92
24	250	400	0,03	-0,74	-0,67	левый винт	93
25	250	400	0,01	-0,51	-0,86	левый винт	94
30	250	450	0,00	-0,71	-0,70	левый винт	99

В точках, расположенных на оси вихря, вектор намагниченности \dot{M} сонаправлен вектору \vec{v} . С удалением от оси вихря вектор намагниченности поворачивается в плоскости, нормаль к которой содержит перпендикуляр к оси вихря (рисунок 3). При этом угол а между векторами \vec{M} и \vec{v} монотонно возрастает с увеличением расстояния до оси и достигает своего наибольшего значения α_{max} в точках на поверхности частицы в средней плоскости, перпендикулярной оси вихря (рисунок 3, б). Таким образом, распределение вектора намагниченности является симметричным относительно оси вихря. С ростом размера частицы и уменьшением напряженности внешнего поля до нуля угол α_{max} увеличивается. Значения α_{0max} при $H_{ext} = 0$ для частиц различных радиусов содержатся в таблице.

Анализ вихревой структуры, возникающей в ферромагнитных наночастицах железа сферической формы при выключении внешнего магнитного поля, позволяет сделать вывод, что снижение *x*-компоненты приведенной остаточной намагниченности с увеличением размера частиц обусловлено следующими факторами: увеличением угла $\alpha_{0\text{max}}$, что уменьшает проекцию вектора \vec{M} на направление \vec{v}_0 ; поворотом оси вихря, приводящего к уменьшению проекции \vec{M} на ось Ox (до нуля для частиц с $R \ge 17$ нм).

б – в зависимости от расстояния до оси вихря

Список использованных источников:

1. Ландау, Л.Д. К теории дисперсии магнитной проницаемости ферромагнитных тел / Л.Д. Ландау, Е.М. Лифшиц // Л.Д. Ландау : Собрание трудов : в 2 т. – М., 1969. – Т. 1. – С. 128–143.

2. Gilbert, T.L. A Lagrangian formulation of gyromagnetic equation of the magnetization field / T.L Gilbert // Physical Review. -1955. - Vol. 100, N_{2} 3. - P. 1243–1246.

3. A Systematic Approach to Multiphysics Extensions of Finite-Element-Based Micromagnetic Simulations: Nmag / T. Fischbacher [et al.] // IEEE Transactions on Magnetics. -2007. - Vol. 43, No 6. -P. 2896-2898.

4. Михайлюк Р.А. Магнитный гистерезис сферических наночастиц железа / Р.А. Михайлюк, И.Л. Дорошевич // Прикладные вопросы точных наук : материалы IV Междунар. науч.-практ. конф. студентов, аспирантов, преподавателей, посвященной 75-летию Победы в Великой Отечественной войне (АМТИ, г. Армавир, Россия, 13–14 ноября 2020 г.) / отв. ред. Л.А. Горовенко ; техн. ред. Е.В. Коврига. – Армавир : РИО АГПУ, 2020. – С. 128–131.

5. Adeyeye, A.O. Large area patterned magnetic nanostructures / A.O. Adeyeye, N. Singh // Journal of Physics D: Applied Physics. -2008. - Vol. 41, No 15. -P. 153001-1–153001-29.