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Аннотация. Для определения расчетного расхода воды в реках, при проектировании мостовых переходов, существует несколько методов основанных на различных законах распределения. При этом в существующих методах не дается градации применения той или иной математической модели. В статье предлагается для более надежного определения величины расчетного расхода проводить анализ эмпирических законов распределения для определения их соответствия теоретическим и в зависимости от этого принимать тот или иной метод. 
Ключевые слова: мостовые переходы, расчетный расход, законы распределения, формулы теории риска
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Abstract. To determine the current water flow in rivers, in the design of bridges, there are several methods based on different laws of distribution. In the existing methods do not give grades of a particular mathematical model. The article is available for a reliable determination of the design flow to analyze the empirical distribution laws to conform to theoretical and based on that take one or another method.
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При проектировании мостовых переходов необходимо знать величину расчетного расхода воды в реках. Определение расчетного расхода является ответственной задачей, т. к. на основе этой величины определяется отверстие моста. Существует несколько методов определения расчётного расхода воды в реках. 
Для рек хорошо изученных в гидрологическом отношении это методы: наибольшего правдоподобия, рекомендуемый СП 33-101-2003; моментов; с применением таблицы Рыбкина-Фостера; с использованием теоретических интегральных кривых распределения С.Н. Крицкого и М.Ф. Менкеля.
И предложенные автором методы [3] основанные на формулах теории риска: при нормальном распределении максимальных расходов и расходах во время подъема и спада паводка; при соответствии распределения фактических максимальных расходов гамма-распределению.
Все методы основаны на различных теоретических распределениях максимальных расходов: на биномиальном, трехпараметрическом гамма-распределении, нормальном распределении.
До сих пор не акцентировалось внимание на исследовании эмпирических законов распределения перед тем как применить тот или иной метод. Автор считает, что для более надежного определения величины расчетного расхода необходимо проводить анализ фактических законов распределения для определения их соответствия теоретическим и в зависимости от этого принимать тот или иной метод.
Для разработки методов, основанных на формулах теории риска проводилось сравнение плотностей распределения фактических максимальных расходов с законом Гаусса, с гамма-распределением, с лог-нормальным распределением.

Степень согласованности эмпирического распределения и теоретического, проводилось по критерию Пирсона . Этот критерий основывается на сравнении фактического и теоретического количества частот исследуемого показателя (расходов воды в реках) в разрядах [2]. Фактическая частота в разряде принималась не менее трёх, а число разрядов не менее пяти. В таблице 1, дан пример статистической обработки максимальных расходов реки Б. Черемшан. Среднее арифметическое значение максимальных расходов и среднее квадратическое отклонение определялись мультипликативным методом и методом суммирования [4].

Таблица 1
Пример статистической обработки максимальных расходов реки Б. Черемшан
	
Разряды интервалов максимальных расходов, 
	Середина разряда,


	Абсо-
лютная
частота,


	Частич-ная
сумма,


	Накоп-
ленная
частота,


	Сере-дина условно-
го интер-

вала,
	Произведения

	
	
	
	
	
	
	

	

	


	0-250
	125
	5
	5
	5
	-3
	-15
	9
	45

	250-500
	375
	7
	12
	17
	-2
	-14
	4
	28

	500-750
	625
	3
	15
	32
	-1
	-3
	1
	3

	750-1000
	

875
	5
	20
	52
	0
	0
	0
	0

	1000-1250
	1125
	2
	22
	74
	1
	2
	1
	2

	1250-1500
	1375
	0
	22
	96
	2
	0
	4
	0

	1500-1750
	
1625
	1
	23
	119
	3
	3
	9
	9

	
	
	



=23
	



=119
	


=395
	
	


-27
	
	


87



При использовании мультипликативного метода, получаем:
– среднее значение максимальных расходов



	;	(1)
– дисперсию



	;	(2)
– среднее квадратическое отклонение


	.
Методом суммирования:
– среднее значение максимальных расходов


	;	(3)
– дисперсию


		(4)
– среднее квадратическое отклонение


	389 .	
В таблице 2 показан пример сравнения плотности распределения максимальных расходов для той же реки с законом Гаусса.

Таблица 2
Сравнение эмпирического распределения максимальных 
расходов воды реки р. Большой Черемшан с гамма-распределением
	
Разряды интервалов максимальных расходов, 
	Абсолютная
частота,


	Вероятность
попадания 
измерений 
в ряд,


	Теоретическое количество 
измерений 
в разряде,


	


	0-250
	5
	0,155
	3,560
	0,582

	250-500
	7
	0,304
	7,000
	0,000

	500-750
	3
	0,243
	5,607
	1,212

	750-1000
	5
	0,155
	3,571
	0,572

	1000-1250
	2
	0,079
	1,813
	0,019

	1250-1500
	0
	0,039
	0,891
	0,891

	1500-1750
	1
	0,018
	0,416
	0,822

	> 1750
	0
	0,001
	0,138
	0,138

	
	



	
	
	



В таблице 2 показан пример сравнения плотности распределения максимальных расходов р. Б. Черемшан с гамма-распределением [4].

Вероятность  в таблице 4 вычислялась по формуле Симпсона 

		

	,	(5)


где,  и  – соответственно левая и правая границы интервалов;

 – ординаты, определяемые для соответствующих абсцисс по формуле

	,	(5)

где,  – гамма функция, определяемая по таблице [1];

 – основание натурального логарифма;


 и  – параметры гамма-распределения, определяемые по формулам (см. параграф 1.2)

	,	(6)

	,	(7)


где,  – среднее квадратическое отклонение параметра .

Формулу (4) применяли при , то есть в виде 

		(8)


а интегральную функцию (5) раскрывали численным методом, вычисляя для каждого интервала в разрядах (см. табл. 2) пять значений  ().
Для теоретического распределения определяется число степеней свободы по формуле 

	,	(9)

где,  – число разрядов (в таблице 2.2 к = 8);



 – число наложений связей (для гамма-распределения ).
В соответствии с данными таблицы 2 для р. Б. Черемшан имеем
	v = 8 – 3 = 5.	





Из таблиц значений  распределения в зависимости от  и  определяем вероятность , получаем  = 0,48.


В математической статистике [3] считается совпадение теоретического и эмпирического распределения при  хорошим.
В результате анализа по 36 рекам был сделан вывод, что фактическое распределение максимальных расходов воды на 18 реках близко соответствует гамма-распределению. Следовательно, в случае соответствия эмпирического распределения максимальных расходов гамма-распределению, необходимо использовать методы, основанные на этом законе.
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